The linear equations that arise in interior methods for constrained optimization are sparse symmetric indefinite and become extremely ill-conditioned as the interior method converges. These linear systems present a challenge for existing solver frameworks based on sparse LU or LDL^T decompositions. We benchmark five well known direct linear solver packages using matrices extracted from power grid optimization problems. The achieved solution accuracy varies greatly among the packages. None of the tested packages delivers significant GPU acceleration for our test cases.
翻译:限制优化的内部方法产生的线性方程是微弱的对称无限期,随着内部方法的交汇而变得极差。这些线性系统对基于稀疏 LU 或 LDL ⁇ T 分解的现有求解框架提出了挑战。我们用从电网优化问题中提取的矩阵基准了五个众所周知的直接线性求解软件包。在各种包件中,所实现的解答准确性差异很大。测试的包件中没有一个能为我们测试案例提供显著的GPU加速率。