Accurate reconstruction of cardiac anatomy from sparse clinical images remains a major challenge in patient-specific modeling. While neural implicit functions have previously been applied to this task, their application to mapping anatomical consistency across subjects has been limited. In this work, we introduce Neural Implicit Heart Coordinates (NIHCs), a standardized implicit coordinate system, based on universal ventricular coordinates, that provides a common anatomical reference frame for the human heart. Our method predicts NIHCs directly from a limited number of 2D segmentations (sparse acquisition) and subsequently decodes them into dense 3D segmentations and high-resolution meshes at arbitrary output resolution. Trained on a large dataset of 5,000 cardiac meshes, the model achieves high reconstruction accuracy on clinical contours, with mean Euclidean surface errors of 2.51$\pm$0.33 mm in a diseased cohort (n=4549) and 2.3$\pm$0.36 mm in a healthy cohort (n=5576). The NIHC representation enables anatomically coherent reconstruction even under severe slice sparsity and segmentation noise, faithfully recovering complex structures such as the valve planes. Compared with traditional pipelines, inference time is reduced from over 60 s to 5-15 s. These results demonstrate that NIHCs constitute a robust and efficient anatomical representation for patient-specific 3D cardiac reconstruction from minimal input data.
翻译:从稀疏临床图像中精确重建心脏解剖结构仍然是患者特异性建模领域的主要挑战。尽管神经隐式函数此前已应用于该任务,但其在跨受试者解剖一致性映射方面的应用仍有限制。本研究提出神经隐式心脏坐标(NIHCs),这是一种基于通用心室坐标的标准化隐式坐标系,为人类心脏提供了统一的解剖参考框架。我们的方法直接从有限数量的2D分割(稀疏采集)预测NIHCs,随后将其解码为任意输出分辨率下的密集3D分割和高分辨率网格。通过在包含5,000个心脏网格的大规模数据集上进行训练,该模型在临床轮廓上实现了高精度重建:在疾病队列(n=4549)中平均欧几里得表面误差为2.51$\pm$0.33 mm,在健康队列(n=5576)中为2.3$\pm$0.36 mm。NIHC表示即使在严重切片稀疏性和分割噪声条件下,仍能实现解剖学一致的重建,准确恢复诸如瓣膜平面等复杂结构。与传统流程相比,推理时间从超过60秒缩短至5-15秒。这些结果表明,NIHCs构成了一种稳健高效的解剖表示方法,能够基于最小输入数据实现患者特异性的3D心脏重建。