Cloud data pipelines increasingly operate under dynamic workloads, evolving schemas, cost constraints, and strict governance requirements. Despite advances in cloud-native orchestration frameworks, most production pipelines rely on static configurations and reactive operational practices, resulting in prolonged recovery times, inefficient resource utilization, and high manual overhead. This paper presents Agentic Cloud Data Engineering, a policy-aware control architecture that integrates bounded AI agents into the governance and control plane of cloud data pipelines. In Agentic Cloud Data Engineering platform, specialized agents analyze pipeline telemetry and metadata, reason over declarative cost and compliance policies, and propose constrained operational actions such as adaptive resource reconfiguration, schema reconciliation, and automated failure recovery. All agent actions are validated against governance policies to ensure predictable and auditable behavior. We evaluate Agentic Cloud Data Engineering platform using representative batch and streaming analytics workloads constructed from public enterprise-style datasets. Experimental results show that Agentic Cloud Data Engineering platform reduces mean pipeline recovery time by up to 45%, lowers operational cost by approximately 25%, and decreases manual intervention events by over 70% compared to static orchestration, while maintaining data freshness and policy compliance. These results demonstrate that policy-bounded agentic control provides an effective and practical approach for governing cloud data pipelines in enterprise environments.
翻译:云数据流水线日益在动态工作负载、演化模式、成本约束和严格治理要求下运行。尽管云原生编排框架取得了进展,但大多数生产流水线仍依赖静态配置和反应式运维实践,导致恢复时间延长、资源利用效率低下以及高昂的人工开销。本文提出智能体云数据工程,这是一种策略感知的控制架构,它将有界人工智能体集成到云数据流水线的治理与控制平面中。在智能体云数据工程平台中,专用智能体分析流水线遥测数据和元数据,对声明式成本与合规策略进行推理,并提出受限的操作行动,例如自适应资源重配置、模式协调和自动化故障恢复。所有智能体行动均需依据治理策略进行验证,以确保行为可预测且可审计。我们使用基于公开企业风格数据集构建的代表性批处理和流分析工作负载来评估智能体云数据工程平台。实验结果表明,与静态编排相比,智能体云数据工程平台将流水线平均恢复时间最多缩短了45%,运营成本降低了约25%,并将人工干预事件减少了70%以上,同时保持了数据新鲜度和策略合规性。这些结果表明,策略有界的智能体控制为在企业环境中治理云数据流水线提供了一种有效且实用的方法。