A common challenge in spatial statistics is to quantify the spatial distributions of clusters of objects. Frequently used approaches treat the central object of each cluster as latent, but it is often the case that cells of one or more types cluster around cells of another type. Such arrangements are common, for example, in microbial biofilm, in which close interspecies spatial clustering is thought to reflect physical interactions among species. Because these interactions arise from or drive biofilm community structure, quantifying these spatial relationships may provide clues to disease pathogenesis or treatment effects. Even when clustering arrangements are not strictly parent-offspring relationships, treating the central object as a parent can enable use of parent-offspring clustering frameworks. We propose a novel multivariate spatial point process model to quantify multicellular arrangements with parent-offspring statistical approaches. We used the proposed model to analyze data from a human dental plaque biofilm image containing spatial locations of Streptococcus, Porphyromonas, Corynebacterium, and Pasteurellaceae, among other species. The proposed multivariate cluster point process (MCPP) model departs from commonly used approaches in that it exploits the locations of the central object in clusters. It also accounts for possibly multilayered, multivariate parent-offspring clustering. In simulated datasets, the MCPP outperforms the classical Neyman-Scott process model, a univariate model for modeling spatially clustered processes, by producing decisively more accurate and precise parameter estimates. Applied to the motivating data, we quantified the simultaneous clustering of Streptococcus and Porphyromonas around Corynebacterium and of Pasteurellaceae around Streptococcus. The proposed MCPP model successfully captured the parent-offspring structure for all the taxa involved.
翻译:空间统计的一个共同挑战是量化物体群集的空间分布。 经常使用的方法将每个群集的中心对象作为潜伏对象对待, 但通常的情况是, 一种或多种类型的细胞围绕另一类的细胞聚在一起。 例如, 在微生物生物胶片中, 此类安排是常见的。 在微生物生物胶片中, 认为密切的物种间集群反映了物种之间的物理互动。 由于这些相互作用源自于或驱动生物胶片群落结构, 量化这些空间关系可能为疾病病原体发源或治疗效果提供线索。 即使群集安排不是严格母体脱向关系, 将中央对象视为母体, 中央对象, 使用新的多变空间点进程来量化多细胞安排。 我们使用拟议的模型来分析包含 Strevetococcus、 Porphymocromonas、 Corymebreal-creal-calcal-calcal-cal-cal-cal-cal-creal-deal-al-al-cal-cal-cal-ralcalcal-ral- scal- procal- mocal- procal- mocal- pal- mal- mocal- mal- mal- mal- mas mas mas mas mal- sal- sal- supal- pal- supal- supal- pal- sal- pal- sal- pal- lasl- madal- madal- la- mad- lad-sl-s-s-s-s-s-s-s-s-s-s-s- la- la- las-s-sl-sl- sal-sl- asl- la-sl-s-sl-sl-sl-sal-sal-sl- la-sl-l-l-l-l-l-l-l-l-s-s-s-sl-sl-sl-sl-sl- mocal-sal- la- moc-sal- moc-