Current Cloud solutions for Edge Computing are inefficient for data-centric applications, as they focus on the IaaS/PaaS level and they miss the data modeling and operations perspective. Consequently, Edge Computing opportunities are lost due to cumbersome and data assets-agnostic processes for end-to-end deployment over the Cloud-to-Edge continuum. In this paper, we introduce MEDAL, an intelligent Cloud-to-Edge Data Fabric to support Data Operations (DataOps)across the continuum and to automate management and orchestration operations over a combined view of the data and the resource layer. MEDAL facilitates building and managing data workflows on top of existing flexible and composable data services, seamlessly exploiting and federating IaaS/PaaS/SaaS resources across different Cloud and Edge environments. We describe the MEDAL Platform as a usable tool for Data Scientists and Engineers, encompassing our concept and we illustrate its application though a connected cars use case.
翻译:电磁计算目前的云溶液对于以数据为中心的应用来说是效率低下的,因为它们侧重于IaaS/PaaS级,没有数据建模和运行视角,因此,由于在云到环境连续体的终端到终端部署方面繁琐和数据资产-不可知性的过程,电磁计算的机会丧失了。在本文中,我们引入了智能云到电磁数据配置工具,用于支持数据操作(DataOps)横跨连续体,以及数据和资源层综合视图的自动化管理和协同操作。MEDAL促进在现有灵活和可比较的数据服务之上建立和管理数据工作流程,无缝地利用和连接IaAS/PaS/SaaS资源,跨越不同的云和边缘环境。我们把MEDAL平台描述为数据科学家和工程师的一个可用工具,涵盖我们的概念,我们通过一个连接的汽车使用案例来说明其应用情况。