Temporal noise correlations are ubiquitous in quantum systems, yet often neglected in the analysis of quantum circuits due to the complexity required to accurately characterize and model them. Autoregressive moving average (ARMA) models are a well-known technique from time series analysis that model time correlations in data. By identifying the space of completely positive trace reserving (CPTP) quantum operations with a particular matrix manifold, we generalize ARMA models to the space of CPTP maps to parameterize and simulate temporally correlated noise in quantum circuits. This approach, denoted Schr\"odinger Wave ARMA (SchWARMA), provides a natural path for generalization of classic techniques from signal processing, control theory, and system identification for which ARMA models and linear systems are essential. This enables the broad theory of classical signal processing to be applied to quantum system simulation, characterization, and noise mitigation.


翻译:在量子系统中,时间噪音的关联无处不在,但在量子电路分析中常常被忽略,因为精确定性和建模所需的复杂性。自动递减移动平均模型是时间序列分析中的一种众所周知的技术,可以模拟数据的时间关系。通过确定带有特定矩阵元件的完全正微量值保留(CPTP)量子操作空间,我们将ARMA模型推广到CPTP地图空间,以参数化和模拟量子电路中与时间相关的噪音。这个称为Schr\'odinger WaveARMA(SchWARMA)的方法为信号处理、控制理论和系统识别等经典技术的概括化提供了自然路径,而ARMA模型和线性系统对于这些技术至关重要。这使得典型信号处理的广义理论能够应用于量子系统模拟、定性和减少噪音。

0
下载
关闭预览

相关内容

专知会员服务
45+阅读 · 2020年10月31日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
80+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
人工智能 | SCI期刊专刊/国际会议信息7条
Call4Papers
7+阅读 · 2019年3月12日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
人工智能 | UAI 2019等国际会议信息4条
Call4Papers
6+阅读 · 2019年1月14日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2020年11月24日
Arxiv
1+阅读 · 2020年11月20日
Arxiv
0+阅读 · 2020年11月20日
Arxiv
0+阅读 · 2020年11月19日
VIP会员
相关VIP内容
专知会员服务
45+阅读 · 2020年10月31日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
80+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
人工智能 | SCI期刊专刊/国际会议信息7条
Call4Papers
7+阅读 · 2019年3月12日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
人工智能 | UAI 2019等国际会议信息4条
Call4Papers
6+阅读 · 2019年1月14日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
相关论文
Arxiv
0+阅读 · 2020年11月24日
Arxiv
1+阅读 · 2020年11月20日
Arxiv
0+阅读 · 2020年11月20日
Arxiv
0+阅读 · 2020年11月19日
Top
微信扫码咨询专知VIP会员