Pixel diffusion aims to generate images directly in pixel space in an end-to-end fashion. This approach avoids the limitations of VAE in the two-stage latent diffusion, offering higher model capacity. Existing pixel diffusion models suffer from slow training and inference, as they usually model both high-frequency signals and low-frequency semantics within a single diffusion transformer (DiT). To pursue a more efficient pixel diffusion paradigm, we propose the frequency-DeCoupled pixel diffusion framework. With the intuition to decouple the generation of high and low frequency components, we leverage a lightweight pixel decoder to generate high-frequency details conditioned on semantic guidance from the DiT. This thus frees the DiT to specialize in modeling low-frequency semantics. In addition, we introduce a frequency-aware flow-matching loss that emphasizes visually salient frequencies while suppressing insignificant ones. Extensive experiments show that DeCo achieves superior performance among pixel diffusion models, attaining FID of 1.62 (256x256) and 2.22 (512x512) on ImageNet, closing the gap with latent diffusion methods. Furthermore, our pretrained text-to-image model achieves a leading overall score of 0.86 on GenEval in system-level comparison. Codes are publicly available at https://github.com/Zehong-Ma/DeCo.
翻译:像素扩散旨在以端到端的方式直接在像素空间中生成图像。该方法避免了潜在扩散两阶段流程中VAE的局限性,提供了更高的模型容量。现有像素扩散模型存在训练和推理速度慢的问题,因为它们通常使用单一的扩散变换器(DiT)同时建模高频信号和低频语义。为探索更高效的像素扩散范式,我们提出了频域解耦像素扩散框架。基于解耦高频与低频成分生成的直观思路,我们采用轻量级像素解码器在DiT提供的语义引导下生成高频细节,从而使DiT能够专注于低频语义建模。此外,我们引入了频域感知流匹配损失函数,该函数在强调视觉显著频率分量的同时抑制非显著分量。大量实验表明,DeCo在像素扩散模型中实现了优越性能,在ImageNet数据集上分别获得1.62(256×256分辨率)和2.22(512×512分辨率)的FID分数,缩小了与潜在扩散方法的差距。此外,我们预训练的文本到图像模型在GenEval系统级评估中取得了0.86的综合领先分数。代码已公开于https://github.com/Zehong-Ma/DeCo。