This paper discusses modern Auto Machine Learning (AutoML) tools from the perspective of a person with little prior experience in Machine Learning (ML). There are many AutoML tools both ready-to-use and under development, which are created to simplify and democratize usage of ML technologies in everyday life. Our position is that ML should be easy to use and available to a greater number of people. Prior research has identified the need for intuitive AutoML tools. This work seeks to understand how well AutoML tools have achieved that goal in practice. We evaluate three AutoML Tools to evaluate the end-user experience and system performance. We evaluate the tools by having them create models from a competition dataset on banking data. We report on their performance and the details of our experience. This process provides a unique understanding of the state of the art of AutoML tools. Finally, we use these experiences to inform a discussion on how future AutoML tools can improve the user experience for neophytes of Machine Learning.
翻译:本文件从一个在机器学习方面经验少的人的角度讨论现代自动机器学习工具(Automal),从一个在机器学习方面经验少的人的角度来讨论现代自动机器学习工具(Automal),许多自动ML工具已经可供使用,正在开发之中,这些工具是用来简化ML技术在日常生活中的使用并使之民主化的。我们的立场是,ML应该容易使用,并且可以提供给更多的人使用。先前的研究已经确定了直观自动学习工具的必要性。这项工作旨在了解自动ML工具在实践中是如何实现这一目标的。我们评估了三个自动ML工具,以评估最终用户的经验和系统性能。我们通过从银行数据的竞争数据集中创建模型来评估这些工具。我们报告这些工具的性能和我们的经验细节。我们利用这些经验来就自动ML工具的艺术现状提供独特的理解。最后,我们利用这些经验来就未来的自动ML工具如何改进机器学习新手的用户经验展开讨论。