We propose a methodology for falsifying safety properties in robotic vehicle systems through property-guided reduction and surrogate execution. By isolating only the control logic and physical dynamics relevant to a given specification, we construct lightweight surrogate models that preserve property-relevant behaviors while eliminating unrelated system complexity. This enables scalable falsification via trace analysis and temporal logic oracles. We demonstrate the approach on a drone control system containing a known safety flaw. The surrogate replicates failure conditions at a fraction of the simulation cost, and a property-guided fuzzer efficiently discovers semantic violations. Our results suggest that controller reduction, when coupled with logic-aware test generation, provides a practical and scalable path toward semantic verification of cyber-physical systems.
翻译:我们提出了一种通过属性引导的约简与代理执行来证伪机器人车辆系统安全属性的方法。通过仅隔离与给定规约相关的控制逻辑和物理动力学,我们构建了轻量级代理模型,这些模型在保留属性相关行为的同时消除了无关的系统复杂性。这通过轨迹分析和时序逻辑预言机实现了可扩展的证伪。我们在一个包含已知安全缺陷的无人机控制系统上验证了该方法。该代理模型以极低的仿真成本复现了故障条件,并且属性引导的模糊测试器高效地发现了语义违规。我们的结果表明,控制器约简与逻辑感知的测试生成相结合,为信息物理系统的语义验证提供了一条实用且可扩展的路径。