As blockchain technology and cryptocurrency become increasingly mainstream, ever-increasing energy costs required to maintain the computational power running these decentralized platforms create a market for more energy-efficient hardware. Photonic cryptographic hash functions, which use photonic integrated circuits to accelerate computation, promise energy efficiency for verifying transactions and mining in a cryptonetwork. Like many analog computing approaches, however, current proposals for photonic cryptographic hash functions that promise similar security guarantees as Bitcoin are susceptible to systematic error, so multiple devices may not reach a consensus on computation despite high numerical precision (associated with low photodetector noise). In this paper, we theoretically and experimentally demonstrate that a more general family of robust discrete analog cryptographic hash functions, which we introduce as LightHash, leverages integer matrix-vector operations on photonic mesh networks of interferometers. The difficulty of LightHash can be adjusted to be sufficiently tolerant to systematic error (calibration error, loss error, coupling error, and phase error) and preserve inherent security guarantees present in the Bitcoin protocol. Finally, going beyond our proof-of-concept, we define a ``photonic advantage'' criterion and justify how recent developments in CMOS optoelectronics (including analog-digital conversion) provably achieve such advantage for robust and digitally-verifiable photonic computing and ultimately generate a new market for decentralized photonic technology.


翻译:随着连锁技术和加密货币日益成为主流,维持这些分散平台运行的计算电量所需的能源成本不断增加,为维持这些分散平台的计算能力创造了一个更节能的硬件市场。光学加密散列功能,利用光学集成电路加速计算,为核查交易和在加密网络中开采提供能源效率。然而,与许多模拟计算方法一样,目前关于光学加密散列功能的建议,即像Bitcoin那样有类似安全保障的建议容易发生系统性错误,因此,尽管数字精确度高(与低光辨识器噪音相关),但多种装置可能无法在计算上达成共识。在本文中,我们理论上和实验性地表明,一个更普遍的、强力的离散类似加密加密功能大家庭,利用光学集成集成集成集成电路网络核查交易和开采的节能效率。LightHash的难度可以调整到足够容忍系统错误(校正错误、损失错误、合并错误和分层错误),并保存Bitcoin协议中存在的固有安全保障。最后,我们作为LightthHH-M-im-immocal Profrical-deal ex-defical acal decal decal decal decal deficreal decal decal dequidestrate) 和我们最终定义了一个新的数字化了一个新的数字化标准。

1
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
71+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
76+阅读 · 2020年7月26日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年6月30日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员