Ambient radio frequency (RF) energy harvesting (EH) technology is key to realize self-sustainable, always-on, low-power, massive Internet of Things networks. Typically, rigid (non-adaptable to channel fluctuations) multi-antenna receive architectures are proposed to support reliable EH operation. Herein, we introduce a dynamic RF combining architecture for ambient RF EH use cases, and exemplify the attainable performance gains via three simple mechanisms, namely, brute force (BF), sequential testing (ST) and codebook based (CB). Among the proposed mechanisms, BF demands the highest power consumption, while CB requires the highest-resolution phase shifters, thus tipping the scales in favor of ST. Finally, we show that the performance gains of ST over a rigid RF combining scheme increase with the number of receive antennas and energy transmitters' deployment density.


翻译:常温无线电频率(RF)能源收集技术是实现自持、始终运行、低功率、大规模Things互联网网络的关键。 通常,为了支持可靠的 EH 操作,建议采用硬性(无法适应频道波动)多ANVNA接收结构。 在这里,我们引入了动态的RF组合环境RF EH使用案例结构,并通过三个简单的机制,即布鲁特力、连续测试和基于代码库(CB)来展示可实现的绩效收益。 在拟议的机制中,BF要求最高电耗,而CB要求最高分辨率级转换器,从而向ST倾斜比例。 最后,我们表明ST的性能收益超过僵硬的RF组合计划,将接收天线和能量发射机的部署密度与接收天线和能量发射机数量相结合。

0
下载
关闭预览

相关内容

专知会员服务
31+阅读 · 2021年6月12日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
智能配用电大数据分析-概率性负荷预测
NE电气
5+阅读 · 2019年7月5日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
《科学》(20190426出版)一周论文导读
科学网
5+阅读 · 2019年4月27日
Nature 一周论文导读 | 2019 年 2 月 28 日
科研圈
13+阅读 · 2019年3月10日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
Arxiv
0+阅读 · 2021年9月22日
Hierarchy Parsing for Image Captioning
Arxiv
6+阅读 · 2019年9月10日
Deep Learning for Energy Markets
Arxiv
10+阅读 · 2019年4月10日
Arxiv
3+阅读 · 2018年10月25日
VIP会员
相关VIP内容
专知会员服务
31+阅读 · 2021年6月12日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
智能配用电大数据分析-概率性负荷预测
NE电气
5+阅读 · 2019年7月5日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
《科学》(20190426出版)一周论文导读
科学网
5+阅读 · 2019年4月27日
Nature 一周论文导读 | 2019 年 2 月 28 日
科研圈
13+阅读 · 2019年3月10日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
Top
微信扫码咨询专知VIP会员