Informal arguments that cryptographic protocols are secure can be made rigorous using inductive definitions. The approach is based on ordinary predicate calculus and copes with infinite-state systems. Proofs are generated using Isabelle/HOL. The human effort required to analyze a protocol can be as little as a week or two, yielding a proof script that takes a few minutes to run. Protocols are inductively defined as sets of traces. A trace is a list of communication events, perhaps comprising many interleaved protocol runs. Protocol descriptions incorporate attacks and accidental losses. The model spy knows some private keys and can forge messages using components decrypted from previous traffic. Three protocols are analyzed below: Otway-Rees (which uses shared-key encryption), Needham-Schroeder (which uses public-key encryption), and a recursive protocol by Bull and Otway (which is of variable length). One can prove that event $ev$ always precedes event $ev'$ or that property $P$ holds provided $X$ remains secret. Properties can be proved from the viewpoint of the various principals: say, if $A$ receives a final message from $B$ then the session key it conveys is good.
翻译:加密协议是安全的非正式论据, 可以用感应定义来严格化。 这种方法基于普通的上游微积分, 并应对无限状态系统。 证据使用Isabelle/ HOL生成。 分析协议所需的人力工作可能只有一周或两周, 产生一个需要几分钟运行的校对脚本。 协议被用感应定义为一组痕迹。 跟踪是一个通信事件清单, 可能包含许多协议间运行。 协议描述包含攻击和意外损失。 协议描述包含攻击和意外损失。 示范间谍了解一些私人密钥, 并且可以使用从以前的交通中解密的部件生成信息。 下面分析三个协议: Otway-Rees( 使用共享钥匙加密 ), Dedeham- Schroeder( 使用公用钥匙加密 ), 以及由公用和 Otway ( 具有可变长度) 的循环协议 。 一个可以证明 $ev$ 事件总是先发生事件 $ev' 或 $P 持有 $ X$ $ $ 。 仍然保密 。 。 。 从各种本子的观点可以证明财产 。 。 。