This paper aims to stir debate about a disconcerting privacy issue on web browsing that could easily emerge because of unethical practices and uncontrolled use of technology. We demonstrate how straightforward is to capture behavioral data about the users at scale, by unobtrusively tracking their mouse cursor movements, and predict user's demographics information with reasonable accuracy using five lines of code. Based on our results, we propose an adversarial method to mitigate user profiling techniques that make use of mouse cursor tracking, such as the recurrent neural net we analyze in this paper. We also release our data and a web browser extension that implements our adversarial method, so that others can benefit from this work in practice.
翻译:本文旨在引发关于网络浏览中令人不安的隐私问题的辩论,由于不道德做法和不受控制地使用技术,这一问题很容易出现。我们展示了如何直截了当地通过无干扰地跟踪鼠标光标的移动来捕捉关于大规模用户的行为数据,并使用五行代码以合理的准确性预测用户的人口信息。根据我们的结果,我们提出了一个对抗性方法,以减少使用鼠标光标跟踪的用户特征分析技术,例如我们在本文件中分析的经常性神经网。我们还发布了数据,并发布了一个应用我们对抗方法的网络浏览器扩展,以便其他人能够从这项工作中实际受益。