A drastic rise in potentially life-threatening misinformation has been a by-product of the COVID-19 pandemic. Computational support to identify false information within the massive body of data on the topic is crucial to prevent harm. Researchers proposed many methods for flagging online misinformation related to COVID-19. However, these methods predominantly target specific content types (e.g., news) or platforms (e.g., Twitter). The methods' capabilities to generalize were largely unclear so far. We evaluate fifteen Transformer-based models on five COVID-19 misinformation datasets that include social media posts, news articles, and scientific papers to fill this gap. We show tokenizers and models tailored to COVID-19 data do not provide a significant advantage over general-purpose ones. Our study provides a realistic assessment of models for detecting COVID-19 misinformation. We expect that evaluating a broad spectrum of datasets and models will benefit future research in developing misinformation detection systems.


翻译:潜在威胁生命的错误信息急剧上升是COVID-19大流行的副产品。在大量关于这一专题的数据中,为识别虚假信息提供计算支持对于防止伤害至关重要。研究人员提出了许多方法来标出与COVID-19有关的网上错误信息。然而,这些方法主要针对特定内容类型(例如新闻)或平台(例如Twitter),迄今为止,推广方法的能力基本上还不清楚。我们评估了五套COVID-19错误数据集的十五种基于变异器的模型,其中包括社交媒体文章、新闻文章和科学论文,以填补这一空白。我们展示了与COVID-19数据相适应的代号和模型,并不比一般用途数据具有重大优势。我们的研究对发现COVID-19错误信息的模式进行了现实的评估。我们期望,对广泛的数据集和模型进行评估将有助于今后开发错误信息检测系统的研究。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
A Survey on GANs for Anomaly Detection
Arxiv
7+阅读 · 2021年9月14日
Arxiv
20+阅读 · 2020年6月8日
A Survey on Deep Learning for Named Entity Recognition
Arxiv
26+阅读 · 2020年3月13日
VIP会员
相关资讯
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
Top
微信扫码咨询专知VIP会员