We introduce an original mathematical model to analyse the diffusion of posts within a generic online social platform. The main novelty is that each user is not simply considered as a node on the social graph, but is further equipped with his/her own Wall and Newsfeed, and has his/her own individual self-posting and re-posting activity. As a main result using our developed model, we derive in closed form the probabilities that posts originating from a given user are found on the Wall and Newsfeed of any other. These are the solution of a linear system of equations, which can be resolved iteratively. In fact, our model is very flexible with respect to the modelling assumptions. Using the probabilities derived from the solution, we define a new measure of per-user influence over the entire network, the $\Psi$-score, which combines the user position on the graph with user (re-)posting activity. In the homogeneous case where all users have the same activity rates, it is shown that a variant of the $\Psi$-score is equal to PageRank. Furthermore, we compare the new model and its $\Psi$-score against the empirical influence measured from very large data traces (Twitter, Weibo). The results illustrate that these new tools can accurately rank influencers with asymmetric (re-)posting activity for such real world applications.


翻译:我们引入了一个原始的数学模型来分析普通在线社会平台内职位的分布。主要的新颖之处是,每个用户不仅被视为社会图上的一个节点,而且进一步配备了自己的长城和新闻,并拥有自己的个人自传和再传活动。我们使用我们开发的模型,以封闭形式得出来自特定用户的日志在长城和新闻中找到的概率,这是可以迭接解决的线性方程式系统的解决办法。事实上,我们的模型在建模假设方面非常灵活。我们利用解决方案产生的概率,定义了对用户对整个网络影响的新尺度,即$=Psi$核心,将用户在图上的位置与用户(再)后传活动结合起来。在所有用户活动率相同的同一案例中,所有用户的美元/Psi-计数公式的变式与PhileRank美元相等。此外,我们将新的模型和美元-位值应用工具对新模型和美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/

0
下载
关闭预览

相关内容

【WWW2021】双曲图卷积网络的协同过滤
专知会员服务
40+阅读 · 2021年3月26日
专知会员服务
124+阅读 · 2020年9月8日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
LibRec 精选:位置感知的长序列会话推荐
LibRec智能推荐
3+阅读 · 2019年5月17日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年9月4日
Arxiv
92+阅读 · 2020年2月28日
Arxiv
10+阅读 · 2019年2月19日
Graph-Based Recommendation System
Arxiv
4+阅读 · 2018年7月31日
Arxiv
8+阅读 · 2014年6月27日
VIP会员
相关VIP内容
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
LibRec 精选:位置感知的长序列会话推荐
LibRec智能推荐
3+阅读 · 2019年5月17日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员