Graph database management systems (GDBMSs) are highly optimized to perform fast traversals, i.e., joins of vertices with their neighbours, by indexing the neighbourhoods of vertices in adjacency lists. However, existing GDBMSs have system-specific and fixed adjacency list structures, which makes each system efficient on only a fixed set of workloads. We describe a new tunable indexing subsystem for GDBMSs, we call A+ indexes, with materialized view support. The subsystem consists of two types of indexes: (i) vertex-partitioned indexes that partition 1-hop materialized views into adjacency lists on either the source or destination vertex IDs; and (ii) edge-partitioned indexes that partition 2-hop views into adjacency lists on one of the edge IDs. As in existing GDBMSs, a system by default requires one forward and one backward vertex-partitioned index, which we call the primary A+ index. Users can tune the primary index or secondary indexes by adding nested partitioning and sorting criteria. Our secondary indexes are space-efficient and use a technique we call offset lists. Our indexing subsystem allows a wider range of applications to benefit from GDBMSs' fast join capabilities. We demonstrate the tunability and space efficiency of A+ indexes through extensive experiments on three workloads.


翻译:图表数据库管理系统(GDBMS)高度优化,可以快速穿行,即通过在相邻列表中将脊椎周围的相邻区与邻居合并,将脊椎与邻居合并,在相邻列表中进行索引化。然而,现有的GDBMS有系统专用和固定的相邻列表结构,使每个系统仅对固定的工作量组合具有效率。我们描述的是一个新的为GDBMS(我们称为A+指数)设计的可加金枪鱼索引子系统,并提供实际化的视图支持。该子系统由两类指数组成:(一) 通过在源或目的地脊椎识别码中将1点偏移观点纳入相邻列表;以及(二) 偏差指数,使每个系统仅对一套固定的工作量组合组合组合在一起,使每个系统对相近的相邻列表产生效率。与现有的GDBMS(默认的系统)一样,需要一种前向和后向的螺旋分割索引,我们称之为主要的A+指数。用户可以通过在主A+指数上调整主要指数或二级指数,通过添加我们定位的系统定位定位定位定位定位定位定位定位和排序的系统测试系统应用标准。

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
73+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
基于深度学习的图像分析技术,116页ppt
专知会员服务
57+阅读 · 2020年7月17日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
【大规模数据系统,552页ppt】Large-scale Data Systems
专知会员服务
61+阅读 · 2019年12月21日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
谷歌足球游戏环境使用介绍
CreateAMind
33+阅读 · 2019年6月27日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Arxiv
0+阅读 · 2020年12月1日
Arxiv
8+阅读 · 2019年5月20日
Arxiv
3+阅读 · 2018年12月21日
Arxiv
9+阅读 · 2018年1月30日
VIP会员
相关VIP内容
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
73+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
基于深度学习的图像分析技术,116页ppt
专知会员服务
57+阅读 · 2020年7月17日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
【大规模数据系统,552页ppt】Large-scale Data Systems
专知会员服务
61+阅读 · 2019年12月21日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
谷歌足球游戏环境使用介绍
CreateAMind
33+阅读 · 2019年6月27日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Top
微信扫码咨询专知VIP会员