This paper introduces a novel adversarial example generation method against face recognition systems (FRSs). An adversarial example (AX) is an image with deliberately crafted noise to cause incorrect predictions by a target system. The AXs generated from our method remain robust under real-world brightness changes. Our method performs non-linear brightness transformations while leveraging the concept of curriculum learning during the attack generation procedure. We demonstrate that our method outperforms conventional techniques from comprehensive experimental investigations in the digital and physical world. Furthermore, this method enables practical risk assessment of FRSs against brightness agnostic AXs.
翻译:本文介绍了一种针对面部识别系统的新颖的对抗性范例生成方法(FRSs),一个对抗性实例(AX)是一个刻意制造噪音的图像,目的是引起目标系统作出不正确的预测。在现实世界的光亮变化下,我们方法产生的AX仍然强劲。我们的方法进行非线性亮度转换,同时在攻击性生成程序期间利用课程学习的概念。我们证明,我们的方法比数字和物理世界的全面实验性调查的常规技术要好。此外,这一方法还使得能够对FRSs进行实际的风险评估,以对抗光学性AXs。