We address the indoor localization problem, where the goal is to predict user's trajectory from the data collected by their smartphone, using inertial sensors such as accelerometer, gyroscope and magnetometer, as well as other environment and network sensors such as barometer and WiFi. Our system implements a deep learning based pedestrian dead reckoning (deep PDR) model that provides a high-rate estimation of the relative position of the user. Using Kalman Filter, we correct the PDR's drift using WiFi that provides a prediction of the user's absolute position each time a WiFi scan is received. Finally, we adjust Kalman Filter results with a map-free projection method that takes into account the physical constraints of the environment (corridors, doors, etc.) and projects the prediction on the possible walkable paths. We test our pipeline on IPIN'19 Indoor Localization challenge dataset and demonstrate that it improves the winner's results by 20\% using the challenge evaluation protocol.
翻译:我们处理室内本地化问题,目标是利用诸如加速计、陀螺仪和磁强计等惯性传感器以及气压计和WiFi等其他环境和网络传感器,从智能手机收集的数据中预测用户的轨迹。 我们的系统采用一个基于深学习的行人死亡计数(深PDR)模型,该模型对用户的相对位置进行高比率估计。 我们使用Kalman过滤器, 使用WiFi来纠正PDR的漂移过程, 使用WiFi来预测每次收到WiFi扫描时用户的绝对位置。 最后, 我们用无地图的投影法对Kalman过滤结果进行调整, 并用无地图的投影法对可能的行走路径进行预测。 我们在IPIN'19 室内本地化挑战数据集上测试我们的输油管线, 并用挑战评估程序显示它能通过 20 来改善赢家的成绩。