Acute Myeloid Leukemia (AML) remains a clinical challenge due to its extreme molecular heterogeneity and high relapse rates. While precision medicine has introduced mutation-specific therapies, many patients still lack effective, personalized options. This paper presents a novel, end-to-end computational framework that bridges the gap between patient-specific transcriptomics and de novo drug discovery. By analyzing bulk RNA sequencing data from the TCGA-LAML cohort, the study utilized Weighted Gene Co-expression Network Analysis (WGCNA) to prioritize 20 high-value biomarkers, including metabolic transporters like HK3 and immune-modulatory receptors such as SIGLEC9. The physical structures of these targets were modeled using AlphaFold3, and druggable hotspots were quantitatively mapped via the DOGSiteScorer engine. Then developed a novel, reaction-first evolutionary metaheuristic algorithm as well as multi-objective optimization programming that assembles novel ligands from fragment libraries, guided by spatial alignment to these identified hotspots. The generative model produced structurally unique chemical entities with a strong bias toward drug-like space, as evidenced by QED scores peaking between 0.5 and 0.7. Validation through ADMET profiling and SwissDock molecular docking identified high-confidence candidates, such as Ligand L1, which achieved a binding free energy of -6.571 kcal/mol against the A08A96 biomarker. These results demonstrate that integrating systems biology with metaheuristic molecular assembly can produce pharmacologically viable, patient tailored leads, offering a scalable blueprint for precision oncology in AML and beyond


翻译:急性髓系白血病(AML)因其极高的分子异质性和高复发率,仍然是临床治疗中的重大挑战。尽管精准医学已引入突变特异性疗法,但许多患者仍缺乏有效的个性化治疗方案。本文提出了一种新颖的端到端计算框架,旨在弥合患者特异性转录组学与从头药物发现之间的鸿沟。通过分析TCGA-LAML队列的批量RNA测序数据,本研究采用加权基因共表达网络分析(WGCNA)筛选出20个高价值生物标志物,包括HK3等代谢转运蛋白和SIGLEC9等免疫调节受体。利用AlphaFold3对这些靶点的物理结构进行建模,并通过DOGSiteScorer引擎定量绘制可成药热点区域。随后,本研究开发了一种新颖的“反应优先”进化元启发式算法及多目标优化程序,该程序在已识别热点空间匹配的指导下,从片段库中组装新型配体。生成模型产生了结构独特的化学实体,其药物相似性空间倾向性显著(QED评分集中于0.5-0.7区间)。通过ADMET特性分析和SwissDock分子对接验证,筛选出高置信度候选化合物(如配体L1对A08A96生物标志物的结合自由能达-6.571 kcal/mol)。这些结果表明,将系统生物学与元启发式分子组装相结合,能够产生药理学可行、患者定制化的先导化合物,为AML乃至更广泛领域的精准肿瘤学提供了可扩展的蓝图。

0
下载
关闭预览

相关内容

DeepSeek模型综述:V1 V2 V3 R1-Zero
专知会员服务
116+阅读 · 2月11日
【KDD2020】图神经网络生成式预训练
专知
23+阅读 · 2020年7月3日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
论文浅尝 | Know-Evolve: Deep Temporal Reasoning for Dynamic KG
开放知识图谱
36+阅读 · 2018年3月30日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
Top
微信扫码咨询专知VIP会员