The 7th Symposium on Educational Advances in Artificial Intelligence (EAAI'17, co-chaired by Sven Koenig and Eric Eaton) launched the EAAI New and Future AI Educator Program to support the training of early-career university faculty, secondary school faculty, and future educators (PhD candidates or postdocs who intend a career in academia). As part of the program, awardees were asked to address one of the following "blue sky" questions: * How could/should Artificial Intelligence (AI) courses incorporate ethics into the curriculum? * How could we teach AI topics at an early undergraduate or a secondary school level? * AI has the potential for broad impact to numerous disciplines. How could we make AI education more interdisciplinary, specifically to benefit non-engineering fields? This paper is a collection of their responses, intended to help motivate discussion around these issues in AI education.

0
下载
关闭预览

相关内容

人工智能在第四次工业革命中扮演着重要的角色,我们也看到了各种机器学习方法的演变。人工智能技术被实践工程师广泛用于解决一系列迄今为止难以解决的问题。EAAI这本杂志为描述人工智能方法在所有工程部门的实际应用的工作的快速出版提供一个国际论坛。提交的论文应报告一些用于现实世界工程应用的人工智能的新方面,并使用一些公共数据集进行验证,以方便研究结果的复制。 官网地址:http://dblp.uni-trier.de/db/journals/eaai/

Deep neural models in recent years have been successful in almost every field, including extremely complex problem statements. However, these models are huge in size, with millions (and even billions) of parameters, thus demanding more heavy computation power and failing to be deployed on edge devices. Besides, the performance boost is highly dependent on redundant labeled data. To achieve faster speeds and to handle the problems caused by the lack of data, knowledge distillation (KD) has been proposed to transfer information learned from one model to another. KD is often characterized by the so-called `Student-Teacher' (S-T) learning framework and has been broadly applied in model compression and knowledge transfer. This paper is about KD and S-T learning, which are being actively studied in recent years. First, we aim to provide explanations of what KD is and how/why it works. Then, we provide a comprehensive survey on the recent progress of KD methods together with S-T frameworks typically for vision tasks. In general, we consider some fundamental questions that have been driving this research area and thoroughly generalize the research progress and technical details. Additionally, we systematically analyze the research status of KD in vision applications. Finally, we discuss the potentials and open challenges of existing methods and prospect the future directions of KD and S-T learning.

0
6
下载
预览

Graphical causal inference as pioneered by Judea Pearl arose from research on artificial intelligence (AI), and for a long time had little connection to the field of machine learning. This article discusses where links have been and should be established, introducing key concepts along the way. It argues that the hard open problems of machine learning and AI are intrinsically related to causality, and explains how the field is beginning to understand them.

0
9
下载
预览

To make deliberate progress towards more intelligent and more human-like artificial systems, we need to be following an appropriate feedback signal: we need to be able to define and evaluate intelligence in a way that enables comparisons between two systems, as well as comparisons with humans. Over the past hundred years, there has been an abundance of attempts to define and measure intelligence, across both the fields of psychology and AI. We summarize and critically assess these definitions and evaluation approaches, while making apparent the two historical conceptions of intelligence that have implicitly guided them. We note that in practice, the contemporary AI community still gravitates towards benchmarking intelligence by comparing the skill exhibited by AIs and humans at specific tasks such as board games and video games. We argue that solely measuring skill at any given task falls short of measuring intelligence, because skill is heavily modulated by prior knowledge and experience: unlimited priors or unlimited training data allow experimenters to "buy" arbitrary levels of skills for a system, in a way that masks the system's own generalization power. We then articulate a new formal definition of intelligence based on Algorithmic Information Theory, describing intelligence as skill-acquisition efficiency and highlighting the concepts of scope, generalization difficulty, priors, and experience. Using this definition, we propose a set of guidelines for what a general AI benchmark should look like. Finally, we present a benchmark closely following these guidelines, the Abstraction and Reasoning Corpus (ARC), built upon an explicit set of priors designed to be as close as possible to innate human priors. We argue that ARC can be used to measure a human-like form of general fluid intelligence and that it enables fair general intelligence comparisons between AI systems and humans.

0
3
下载
预览

In the last years, Artificial Intelligence (AI) has achieved a notable momentum that may deliver the best of expectations over many application sectors across the field. For this to occur, the entire community stands in front of the barrier of explainability, an inherent problem of AI techniques brought by sub-symbolism (e.g. ensembles or Deep Neural Networks) that were not present in the last hype of AI. Paradigms underlying this problem fall within the so-called eXplainable AI (XAI) field, which is acknowledged as a crucial feature for the practical deployment of AI models. This overview examines the existing literature in the field of XAI, including a prospect toward what is yet to be reached. We summarize previous efforts to define explainability in Machine Learning, establishing a novel definition that covers prior conceptual propositions with a major focus on the audience for which explainability is sought. We then propose and discuss about a taxonomy of recent contributions related to the explainability of different Machine Learning models, including those aimed at Deep Learning methods for which a second taxonomy is built. This literature analysis serves as the background for a series of challenges faced by XAI, such as the crossroads between data fusion and explainability. Our prospects lead toward the concept of Responsible Artificial Intelligence, namely, a methodology for the large-scale implementation of AI methods in real organizations with fairness, model explainability and accountability at its core. Our ultimate goal is to provide newcomers to XAI with a reference material in order to stimulate future research advances, but also to encourage experts and professionals from other disciplines to embrace the benefits of AI in their activity sectors, without any prior bias for its lack of interpretability.

1
42
下载
预览

There is a resurgent interest in developing intelligent open-domain dialog systems due to the availability of large amounts of conversational data and the recent progress on neural approaches to conversational AI. Unlike traditional task-oriented bots, an open-domain dialog system aims to establish long-term connections with users by satisfying the human need for communication, affection, and social belonging. This paper reviews the recent works on neural approaches that are devoted to addressing three challenges in developing such systems: semantics, consistency, and interactiveness. Semantics requires a dialog system to not only understand the content of the dialog but also identify user's social needs during the conversation. Consistency requires the system to demonstrate a consistent personality to win users trust and gain their long-term confidence. Interactiveness refers to the system's ability to generate interpersonal responses to achieve particular social goals such as entertainment, conforming, and task completion. The works we select to present here is based on our unique views and are by no means complete. Nevertheless, we hope that the discussion will inspire new research in developing more intelligent dialog systems.

0
7
下载
预览

Deep learning has penetrated all aspects of our lives and brought us great convenience. However, the process of building a high-quality deep learning system for a specific task is not only time-consuming but also requires lots of resources and relies on human expertise, which hinders the development of deep learning in both industry and academia. To alleviate this problem, a growing number of research projects focus on automated machine learning (AutoML). In this paper, we provide a comprehensive and up-to-date study on the state-of-the-art AutoML. First, we introduce the AutoML techniques in details according to the machine learning pipeline. Then we summarize existing Neural Architecture Search (NAS) research, which is one of the most popular topics in AutoML. We also compare the models generated by NAS algorithms with those human-designed models. Finally, we present several open problems for future research.

0
32
下载
预览

Music recommender systems (MRS) have experienced a boom in recent years, thanks to the emergence and success of online streaming services, which nowadays make available almost all music in the world at the user's fingertip. While today's MRS considerably help users to find interesting music in these huge catalogs, MRS research is still facing substantial challenges. In particular when it comes to build, incorporate, and evaluate recommendation strategies that integrate information beyond simple user--item interactions or content-based descriptors, but dig deep into the very essence of listener needs, preferences, and intentions, MRS research becomes a big endeavor and related publications quite sparse. The purpose of this trends and survey article is twofold. We first identify and shed light on what we believe are the most pressing challenges MRS research is facing, from both academic and industry perspectives. We review the state of the art towards solving these challenges and discuss its limitations. Second, we detail possible future directions and visions we contemplate for the further evolution of the field. The article should therefore serve two purposes: giving the interested reader an overview of current challenges in MRS research and providing guidance for young researchers by identifying interesting, yet under-researched, directions in the field.

0
7
下载
预览

Internet of Things (IoT) infrastructure within the physical library environment is the basis for an integrative, hybrid approach to digital resource recommenders. The IoT infrastructure provides mobile, dynamic wayfinding support for items in the collection, which includes features for location-based recommendations. The evaluation and analysis herein clarified the nature of users' requests for recommendations based on their location, and describes subject areas of the library for which users request recommendations. The results indicated that users of IoT-based recommendations are interested in a broad distribution of subjects, with a short-head distribution from this collection in American and English Literature. A long-tail finding showed a diversity of topics that are recommended to users in the library book stacks with IoT-powered recommendations.

0
4
下载
预览

We introduce DAiSEE, the largest multi-label video classification dataset comprising of over two-and-a-half million video frames (2,723,882), 9068 video snippets (about 25 hours of recording) captured from 112 users for recognizing user affective states, including engagement, in the wild. In addition to engagement, it also includes associated affective states of boredom, confusion, and frustration, which are relevant to such applications. The dataset has four levels of labels from very low to very high for each of the affective states, collected using crowd annotators and correlated with a gold standard annotation obtained from a team of expert psychologists. We have also included benchmark results on this dataset using state-of-the-art video classification methods that are available today, and the baselines on each of the labels is included with this dataset. To the best of our knowledge, DAiSEE is the first and largest such dataset in this domain. We believe that DAiSEE will provide the research community with challenges in feature extraction, context-based inference, and development of suitable machine learning methods for related tasks, thus providing a springboard for further research.

0
4
下载
预览
小贴士
相关论文
Bernhard Schölkopf
9+阅读 · 2019年11月24日
The Measure of Intelligence
François Chollet
3+阅读 · 2019年11月5日
Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI
Alejandro Barredo Arrieta,Natalia Díaz-Rodríguez,Javier Del Ser,Adrien Bennetot,Siham Tabik,Alberto Barbado,Salvador García,Sergio Gil-López,Daniel Molina,Richard Benjamins,Raja Chatila,Francisco Herrera
42+阅读 · 2019年10月22日
Minlie Huang,Xiaoyan Zhu,Jianfeng Gao
7+阅读 · 2019年10月22日
AutoML: A Survey of the State-of-the-Art
Xin He,Kaiyong Zhao,Xiaowen Chu
32+阅读 · 2019年8月14日
Sophie Melville,Kathryn Eccles,Taha Yasseri
3+阅读 · 2018年4月5日
Markus Schedl,Hamed Zamani,Ching-Wei Chen,Yashar Deldjoo,Mehdi Elahi
7+阅读 · 2018年3月21日
Arjun D'Cunha,Abhay Gupta,Kamal Awasthi,Vineeth Balasubramanian
4+阅读 · 2017年12月15日
相关资讯
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | SCI期刊专刊/国际会议信息7条
Call4Papers
6+阅读 · 2019年3月12日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
7+阅读 · 2018年12月29日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
10+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
人工智能 | PRICAI 2019等国际会议信息9条
Call4Papers
4+阅读 · 2018年12月13日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
人工智能 | 国际会议截稿信息5条
Call4Papers
4+阅读 · 2017年11月22日
Top