Deep generative models are challenging the classical methods in the field of anomaly detection nowadays. Every new method provides evidence of outperforming its predecessors, often with contradictory results. The objective of this comparison is twofold: comparison of anomaly detection methods of various paradigms, and identification of sources of variability that can yield different results. The methods were compared on popular tabular and image datasets. While the one class support-vector machine (OC-SVM) had no rival on the tabular datasets, the best results on the image data were obtained either by a feature-matching GAN or a combination of variational autoencoder (VAE) and OC-SVM, depending on the experimental conditions. The main sources of variability that can influence the performance of the methods were identified to be: the range of searched hyper-parameters, the methodology of model selection, and the choice of the anomalous samples. All our code and results are available for download.


翻译:深度基因模型挑战了当今异常现象探测领域的古典方法。 每一个新方法都提供了其前身表现优于以往方法的证据, 往往结果相互矛盾。 比较的目的是双重的: 比较各种范式的异常检测方法, 并查明可产生不同结果的变异性来源。 方法在流行的表格和图像数据集中进行了比较。 虽然一个级支持- 摄像机( OC- SVM) 在表格数据集上没有对手, 图像数据的最佳结果要么是通过特征匹配的 GAN 获得的, 要么是通过变异性自动计算机( VAE) 和 OC- SVM 组合获得的, 取决于实验条件。 能够影响方法性能的主要变异性来源被确定为: 搜索的超参数范围、 模型选择方法和选择异常样品。 我们的所有代码和结果都可以下载。

0
下载
关闭预览

相关内容

在数据挖掘中,异常检测(英语:anomaly detection)对不符合预期模式或数据集中其他项目的项目、事件或观测值的识别。通常异常项目会转变成银行欺诈、结构缺陷、医疗问题、文本错误等类型的问题。异常也被称为离群值、新奇、噪声、偏差和例外。 特别是在检测滥用与网络入侵时,有趣性对象往往不是罕见对象,但却是超出预料的突发活动。这种模式不遵循通常统计定义中把异常点看作是罕见对象,于是许多异常检测方法(特别是无监督的方法)将对此类数据失效,除非进行了合适的聚集。相反,聚类分析算法可能可以检测出这些模式形成的微聚类。 有三大类异常检测方法。[1] 在假设数据集中大多数实例都是正常的前提下,无监督异常检测方法能通过寻找与其他数据最不匹配的实例来检测出未标记测试数据的异常。监督式异常检测方法需要一个已经被标记“正常”与“异常”的数据集,并涉及到训练分类器(与许多其他的统计分类问题的关键区别是异常检测的内在不均衡性)。半监督式异常检测方法根据一个给定的正常训练数据集创建一个表示正常行为的模型,然后检测由学习模型生成的测试实例的可能性。
最新《神经架构搜索NAS》教程,33页pdf
专知会员服务
26+阅读 · 2020年12月2日
生成式对抗网络GAN异常检测
专知会员服务
114+阅读 · 2019年10月13日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
150+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
异常检测(Anomaly Detection)综述
极市平台
20+阅读 · 2020年10月24日
已删除
将门创投
4+阅读 · 2020年6月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
12+阅读 · 2019年4月9日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
q-Space Novelty Detection with Variational Autoencoders
Arxiv
3+阅读 · 2018年6月5日
Arxiv
8+阅读 · 2018年4月12日
Arxiv
7+阅读 · 2018年3月19日
VIP会员
相关资讯
异常检测(Anomaly Detection)综述
极市平台
20+阅读 · 2020年10月24日
已删除
将门创投
4+阅读 · 2020年6月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
12+阅读 · 2019年4月9日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
q-Space Novelty Detection with Variational Autoencoders
Arxiv
3+阅读 · 2018年6月5日
Arxiv
8+阅读 · 2018年4月12日
Arxiv
7+阅读 · 2018年3月19日
Top
微信扫码咨询专知VIP会员