Computational notebooks-such as Jupyter or Colab-combine text and data analysis code. They have become ubiquitous in the world of data science and exploratory data analysis. Since these notebooks present a different programming paradigm than conventional IDE-driven programming, it is plausible that debugging in computational notebooks might also be different. More specifically, since creating notebooks blends domain knowledge, statistical analysis, and programming, the ways in which notebook users find and fix errors in these different forms might be different. In this paper, we present an exploratory, observational study into how notebook users find and understand potential errors in notebooks. We presented users with notebooks pre-populated with common notebook errors-errors rooted in either the statistical data analysis, the knowledge of domain concepts, or in the programming. We then analyzed the strategies our study participants used to find these errors and determined how successful each strategy was at identifying errors. Our findings indicate that while the notebook programming environment is different from the environments used for traditional programming, debugging strategies remain quite similar. It is our hope that the insights presented in this paper will help both notebook tool designers and educators make changes to improve how data scientists discover errors more easily in the notebooks they write.


翻译:计算笔记本中的调试可能与传统的 IDE 驱动的编程不同。 更具体地说, 创建笔记本可以混合域知识、 统计分析和编程, 笔记本用户发现和修正这些不同形式的错误的方法可能不同。 在本文中, 我们提出一个探索性的观察性研究, 研究笔记本用户如何发现和理解笔记本中的潜在错误。 我们向用户介绍的笔记本与共同的笔记本错误仪的预集模式, 其根植于统计数据分析、 域概念知识或编程中。 我们然后分析我们的研究参与者用来找到这些错误的战略, 并确定每项战略在辨别错误方面多么成功。 我们的研究结果表明, 笔记本编程环境与传统编程所使用的环境不同, 解调策略仍然非常相似。 我们希望, 本文中提供的洞察力将帮助笔记本的科学家更方便地改进笔记本工具设计师和教育工作者的写错误。

0
下载
关闭预览

相关内容

Jupyter Notebook是以网页的形式打开,可以在网页页面中直接编写代码和运行代码,代码的运行结果也会直接在代码块下显示的程序。如在编程过程中需要编写说明文档,可在同一个页面中直接编写,便于作及时的说明和解释。
Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
Arxiv
12+阅读 · 2019年3月14日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员