Region anchors are the cornerstone of modern object detection techniques. State-of-the-art detectors mostly rely on a dense anchoring scheme, where anchors are sampled uniformly over the spatial domain with a predefined set of scales and aspect ratios. In this paper, we revisit this foundational stage. Our study shows that it can be done much more effectively and efficiently. Specifically, we present an alternative scheme, named Guided Anchoring, which leverages semantic features to guide the anchoring. The proposed method jointly predicts the locations where the center of objects of interest are likely to exist as well as the scales and aspect ratios at different locations. On top of predicted anchor shapes, we mitigate the feature inconsistency with a feature adaption module. We also study the use of high-quality proposals to improve detection performance. The anchoring scheme can be seamlessly integrated into proposal methods and detectors. With Guided Anchoring, we achieve 9.1% higher recall on MS COCO with 90% fewer anchors than the RPN baseline. We also adopt Guided Anchoring in Fast R-CNN, Faster R-CNN and RetinaNet, respectively improving the detection mAP by 2.2%, 2.7% and 1.2%. Code will be available at https://github.com/open-mmlab/mmdetection.
翻译:区域锚是现代天体探测技术的基石。 最新水平的探测器主要依赖于密闭锚制, 其定位器在空间域上以一套预先定义的尺度和方位比率进行统一取样。 在本文中, 我们重新审视这个基础阶段。 我们的研究显示, 它可以更加高效和高效地进行。 具体地说, 我们提出了一个替代方案, 名为“ 向导Anchoring ”, 利用语义特征来引导锚定。 拟议的方法共同预测了可能存在对象中心的地点以及不同地点的标定比例和方位比率。 在预测的锚制形状上, 我们用一个功能调整模块来减少功能不一致之处。 我们还研究如何使用高质量的建议来改进探测性能。 锚定型计划可以顺利地纳入建议的方法和探测器中。 在“ 向导Anchoring” 中, 我们用比 R-CNN基线减少90%的锚定点数, 我们还在快速的R-CNN和RetinaNet中采用方向的安灵定位, 将R-CNN和RetinanNet中, 分别用一个功能调整了功能调调调调调调调调调/ mqmqummqum/ 。 在2.immmmm/ drobr/ bemmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmum/ 。