We argue that language models (LMs) have strong potential as investigative tools for probing the distinction between possible and impossible natural languages and thus uncovering the inductive biases that support human language learning. We outline a phased research program in which LM architectures are iteratively refined to better discriminate between possible and impossible languages, supporting linking hypotheses to human cognition.


翻译:我们认为语言模型(LMs)具备作为探究工具的显著潜力,可用于探索可能自然语言与不可能自然语言之间的区分,从而揭示支持人类语言学习的归纳偏置。我们提出了一个分阶段的研究计划,通过迭代优化语言模型架构,使其能更好地区分可能语言与不可能语言,进而建立与人类认知的关联假设。

0
下载
关闭预览

相关内容

【NAACL2021】信息解缠正则化持续学习的文本分类
专知会员服务
22+阅读 · 2021年4月11日
基于模型的强化学习综述
专知
42+阅读 · 2022年7月13日
【CVPR 2020 Oral】小样本类增量学习
专知
20+阅读 · 2020年6月26日
MNIST入门:贝叶斯方法
Python程序员
23+阅读 · 2017年7月3日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
8+阅读 · 2014年12月31日
A Survey of Large Language Models
Arxiv
495+阅读 · 2023年3月31日
Arxiv
82+阅读 · 2023年3月26日
VIP会员
相关资讯
基于模型的强化学习综述
专知
42+阅读 · 2022年7月13日
【CVPR 2020 Oral】小样本类增量学习
专知
20+阅读 · 2020年6月26日
MNIST入门:贝叶斯方法
Python程序员
23+阅读 · 2017年7月3日
相关基金
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
8+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员