Designing parameterized quantum circuits (PQCs) that are expressive, trainable, and robust to hardware noise is a central challenge for quantum machine learning (QML) on noisy intermediate-scale quantum (NISQ) devices. We present a Domain-Aware Quantum Circuit (DAQC) that leverages image priors to guide locality-preserving encoding and entanglement via non-overlapping DCT-style zigzag windows. The design employs interleaved encode-entangle-train cycles, where entanglement is applied among qubits hosting neighboring pixels, aligned to device connectivity. This staged, locality-preserving information flow expands the effective receptive field without deep global mixing, enabling efficient use of limited depth and qubits. The design concentrates representational capacity on short-range correlations, reduces long-range two-qubit operations, and encourages stable optimization, thereby mitigating depth-induced and globally entangled barren-plateau effects. We evaluate DAQC on MNIST, FashionMNIST, and PneumoniaMNIST datasets. On quantum hardware, DAQC achieves performance competitive with strong classical baselines (e.g., ResNet-18/50, DenseNet-121, EfficientNet-B0) and substantially outperforming Quantum Circuit Search (QCS) baselines. To the best of our knowledge, DAQC, which uses a quantum feature extractor with only a linear classical readout (no deep classical backbone), currently achieves the best reported performance on real quantum hardware for QML-based image classification tasks. Code and pretrained models are available at: https://github.com/gurinder-hub/DAQC.
翻译:设计兼具表达能力强、可训练性好且对硬件噪声鲁棒的参数化量子电路(PQC),是当前在含噪声中等规模量子(NISQ)设备上实现量子机器学习(QML)的核心挑战。本文提出一种面向特定领域的量子电路(DAQC),该设计利用图像先验知识,通过非重叠的DCT风格之字形窗口来引导保持局部性的编码和纠缠操作。该设计采用编码-纠缠-训练交错循环的架构,其中纠缠操作施加于承载相邻像素的量子比特之间,并与设备连接性对齐。这种分阶段、保持局部性的信息流,在不进行深度全局混合的情况下扩展了有效感受野,从而能够高效利用有限的电路深度和量子比特资源。该设计将表征能力集中于短程相关性,减少了长程双量子比特操作,并促进了稳定的优化过程,从而缓解了由深度引起的以及全局纠缠导致的贫瘠高原效应。我们在MNIST、FashionMNIST和PneumoniaMNIST数据集上对DAQC进行了评估。在量子硬件上,DAQC取得了与强大经典基线模型(如ResNet-18/50、DenseNet-121、EfficientNet-B0)相竞争的性能,并显著优于量子电路搜索(QCS)基线。据我们所知,DAQC仅使用量子特征提取器配合线性经典读出层(无深度经典骨干网络),目前在基于QML的图像分类任务上,于真实量子硬件上取得了已报道的最佳性能。代码与预训练模型发布于:https://github.com/gurinder-hub/DAQC。