Deep equilibrium models (DEQs) have recently emerged as a powerful paradigm for training infinitely deep weight-tied neural networks that achieve state of the art performance across many modern machine learning tasks. Despite their practical success, theoretically understanding the gradient descent dynamics for training DEQs remains an area of active research. In this work, we rigorously study the gradient descent dynamics for DEQs in the simple setting of linear models and single-index models, filling several gaps in the literature. We prove a conservation law for linear DEQs which implies that the parameters remain trapped on spheres during training and use this property to show that gradient flow remains well-conditioned for all time. We then prove linear convergence of gradient descent to a global minimizer for linear DEQs and deep equilibrium single-index models under appropriate initialization and with a sufficiently small step size. Finally, we validate our theoretical findings through experiments.


翻译:深度均衡模型(DEQs)作为一种训练无限深度权重共享神经网络的新范式,近年来在众多现代机器学习任务中实现了最先进的性能。尽管其在实际应用中取得了显著成功,但从理论上理解训练DEQs的梯度下降动力学仍是当前活跃的研究领域。本文在线性模型和单指标模型的简化设定下,对DEQs的梯度下降动力学进行了严格分析,填补了文献中的若干空白。我们证明了线性DEQs存在守恒律,该性质意味着训练过程中参数始终被限制在球面上,并利用此特性证明了梯度流在所有时间步均保持良态。随后,在适当的初始化和足够小的步长条件下,我们证明了梯度下降对线性DEQs及深度均衡单指标模型具有线性收敛性,且能收敛至全局最小点。最后,通过实验验证了理论结果的有效性。

0
下载
关闭预览

相关内容

梯度的本意是一个向量(矢量),表示某一函数在该点处的方向导数沿着该方向取得最大值,即函数在该点处沿着该方向(此梯度的方向)变化最快,变化率最大(为该梯度的模)。
【NeurIPS2024】几何轨迹扩散模型
专知会员服务
24+阅读 · 2024年10月20日
【ICML2023】SEGA:结构熵引导的图对比学习锚视图
专知会员服务
22+阅读 · 2023年5月10日
 DiffRec: 扩散推荐模型(SIGIR'23)
专知会员服务
48+阅读 · 2023年4月16日
【AAAI2022】基于变分信息瓶颈的图结构学习
专知会员服务
20+阅读 · 2021年12月18日
【CVPR 2020 Oral】小样本类增量学习
专知
20+阅读 · 2020年6月26日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关VIP内容
【NeurIPS2024】几何轨迹扩散模型
专知会员服务
24+阅读 · 2024年10月20日
【ICML2023】SEGA:结构熵引导的图对比学习锚视图
专知会员服务
22+阅读 · 2023年5月10日
 DiffRec: 扩散推荐模型(SIGIR'23)
专知会员服务
48+阅读 · 2023年4月16日
【AAAI2022】基于变分信息瓶颈的图结构学习
专知会员服务
20+阅读 · 2021年12月18日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员