We propose a method to fit arbitrarily accurate blendshape rig models by solving the inverse rig problem in realistic human face animation. The method considers blendshape models with different levels of added corrections and solves the regularized least-squares problem using coordinate descent, i.e., iteratively estimating blendshape weights. Besides making the optimization easier to solve, this approach ensures that mutually exclusive controllers will not be activated simultaneously and improves the goodness of fit after each iteration. We show experimentally that the proposed method yields solutions with mesh error comparable to or lower than the state-of-the-art approaches while significantly reducing the cardinality of the weight vector (over 20 percent), hence giving a high-fidelity reconstruction of the reference expression that is easier to manipulate in the post-production manually. Python scripts for the algorithm will be publicly available upon acceptance of the paper.
翻译:我们提出了一种方法,通过在真实人脸动画中解决反向骨骼问题来拟合任意精确的混合形状骨骼模型。该方法考虑到不同级别的修正的混合形状模型,并使用坐标下降方法解决正则化最小二乘问题,即迭代估计混合形状权重。除了使优化变得更容易解决外,这种方法还确保在每次迭代后互相排斥的控制器不会同时被激活,并且进一步提高拟合的质量。我们的实验证明,提出的方法产生的网格误差可与或低于现有最先进方法,同时将权重向量的基数显著降低(超过20%),因此在后期手动操纵过程中提供了高保真度的参考表情的重构。论文中的Python脚本将在论文被接受后公开发布。