Decentralized Autonomous Organizations (DAOs) have emerged as a novel way to coordinate a group of (pseudonymous) entities towards a shared vision (e.g., promoting sustainability), utilizing self-executing smart contracts on blockchains to support decentralized governance and decision-making. In just a few years, over 4,000 DAOs have been launched in various domains, such as investment, education, health, and research. Despite such rapid growth and diversity, it is unclear how these DAOs actually work in practice and to what extent they are effective in achieving their goals. Given this, we aim to unpack how (well) DAOs work in practice. We conducted an in-depth analysis of a diverse set of 10 DAOs of various categories and smart contracts, leveraging on-chain (e.g., voting results) and off-chain data (e.g., community discussions) as well as our interviews with DAO organizers/members. Specifically, we defined metrics to characterize key aspects of DAOs, such as the degrees of decentralization and autonomy. We observed CompoundDAO, AssangeDAO, Bankless, and Krausehouse having poor decentralization in voting, while decentralization has improved over time for one-person-one-vote DAOs (e.g., Proof of Humanity). Moreover, the degree of autonomy varies among DAOs, with some (e.g., Compound and Krausehouse) relying more on third parties than others. Lastly, we offer a set of design implications for future DAO systems based on our findings.


翻译:分散自治组织(DAOs)作为一种新型的协调(假名)实体的方式出现,以自我执行的智能合约为基础的区块链支持分散的治理和决策制定,旨在共同实现一个愿景(例如促进可持续性)。在短短几年内,已经在各个领域中,如投资、教育、健康和研究中,推出了超过4,000个DAOs。尽管有如此快速的增长和多样性,但目前尚不清楚这些DAOs实际上如何工作,以及它们在实现目标方面有多大的效果。因此,我们旨在分解(好)DAOs在实践中的工作原理。我们对各种类别和智能合约的10个DAOs进行了深入的分析,利用链上(例如投票结果)和链外的数据(例如社区讨论)以及我们与DAO组织者/成员的采访。具体来说,我们定义了度量标准来描述DAOs的关键方面,例如去中心化和自治的程度。我们观察到CompoundDAO,AssangeDAO,Bankless和Krausehouse在投票中的去中心化程度较低,而一个人一票的DAOs(例如“人证明”)的去中心化程度随着时间的推移而改善。此外,自治程度在DAOs之间也存在差异,有些(例如Compound和Krausehouse)比其他DAOs更依赖第三方。最后,我们根据研究结果提出了一组未来DAO系统的设计启示。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
SIGIR2019 接收论文列表
专知
18+阅读 · 2019年4月20日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
1+阅读 · 2023年6月5日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
SIGIR2019 接收论文列表
专知
18+阅读 · 2019年4月20日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员