Session-based recommendation plays a central role in a wide spectrum of online applications, ranging from e-commerce to online advertising services. However, the majority of existing session-based recommendation techniques (e.g., attention-based recurrent network or graph neural network) are not well-designed for capturing the complex transition dynamics exhibited with temporally-ordered and multi-level inter-dependent relation structures. These methods largely overlook the relation hierarchy of item transitional patterns. In this paper, we propose a multi-task learning framework with Multi-level Transition Dynamics (MTD), which enables the jointly learning of intra- and inter-session item transition dynamics in automatic and hierarchical manner. Towards this end, we first develop a position-aware attention mechanism to learn item transitional regularities within individual session. Then, a graph-structured hierarchical relation encoder is proposed to explicitly capture the cross-session item transitions in the form of high-order connectivities by performing embedding propagation with the global graph context. The learning process of intra- and inter-session transition dynamics are integrated, to preserve the underlying low- and high-level item relationships in a common latent space. Extensive experiments on three real-world datasets demonstrate the superiority of MTD as compared to state-of-the-art baselines.


翻译:在从电子商务到在线广告服务等一系列广泛的在线应用中,基于会议的建议在从电子商务到在线广告服务等一系列广泛的在线应用中发挥着核心作用。然而,大多数基于会议的现有建议技术(例如,基于关注的经常性网络或图形神经网络),对于捕捉以时间顺序和多层次的相互依存关系结构所显示的复杂的过渡动态并非设计良好的方法。这些方法在很大程度上忽视了项目过渡模式的等级关系。在本文件中,我们提议与多层次过渡动态(MTD)一起建立一个多任务学习框架,使以自动和等级方式共同学习会期内和闭会期间项目过渡动态。为此,我们首先开发一个位置觉注意机制,学习个别会议内的项目过渡性规律。然后,建议以图表结构的等级关系编码器,通过将传播与全球图表环境相结合的方式,明确捕捉跨会期项目转变的形式。 内部和会期过渡动态的学习过程是一体化的,以维护共同潜伏空间的低层次和高层次项目关系。我们首先开发一个位置关注机制,以学习个人会议内的过渡性项目。然后,提出一个图表结构结构分级的分级实验,以显示现实世界的基线。

0
下载
关闭预览

相关内容

专知会员服务
58+阅读 · 2021年4月29日
【KDD2020】 图神经网络在生物医药领域的应用
专知会员服务
37+阅读 · 2020年11月2日
【KDD 2020】基于互信息最大化的多知识图谱语义融合
专知会员服务
41+阅读 · 2020年9月7日
【新书】深度学习搜索,Deep Learning for Search,附327页pdf
专知会员服务
206+阅读 · 2020年1月13日
CIKM2020推荐系统论文集合
机器学习与推荐算法
10+阅读 · 2020年10月13日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
互信息论文笔记
CreateAMind
23+阅读 · 2018年8月23日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
「知识表示学习」专题论文推荐 | 每周论文清单
推荐中的序列化建模:Session-based neural recommendation
机器学习研究会
18+阅读 · 2017年11月5日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Arxiv
10+阅读 · 2019年2月19日
Next Item Recommendation with Self-Attention
Arxiv
5+阅读 · 2018年8月25日
Arxiv
5+阅读 · 2017年11月13日
VIP会员
相关VIP内容
专知会员服务
58+阅读 · 2021年4月29日
【KDD2020】 图神经网络在生物医药领域的应用
专知会员服务
37+阅读 · 2020年11月2日
【KDD 2020】基于互信息最大化的多知识图谱语义融合
专知会员服务
41+阅读 · 2020年9月7日
【新书】深度学习搜索,Deep Learning for Search,附327页pdf
专知会员服务
206+阅读 · 2020年1月13日
相关资讯
CIKM2020推荐系统论文集合
机器学习与推荐算法
10+阅读 · 2020年10月13日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
互信息论文笔记
CreateAMind
23+阅读 · 2018年8月23日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
「知识表示学习」专题论文推荐 | 每周论文清单
推荐中的序列化建模:Session-based neural recommendation
机器学习研究会
18+阅读 · 2017年11月5日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Top
微信扫码咨询专知VIP会员