A comprehensive understanding of collocation can help understand performance outcomes. For university cohorts, this needs data that describes large groups over a long period. Harnessing user devices to infer this, while tempting, is challenged by privacy concerns, power consumption, and maintenance issues. Alternatively, embedding new sensors in the environment is limited by the expense of covering the entire campus. We investigate the feasibility of leveraging WiFi association logs for this purpose. While these provide coarse approximations of location, these are easily obtainable and depict multiple users on campus over a semester. We explore how these coarse collocations are related to individual performance. Specifically, we inspect the association between individual performance and the collocation behaviors of project group members. We study 163 students (in 54 project groups) over 14 weeks. After describing how we determine collocation with the WiFi logs, we present a study to analyze how collocation within groups relates to a student's final score. We find collocation behaviors show a significant correlation (Pearson's r = 0.24) with performance -- better than both peer feedback or individual behaviors like attendance. Finally, we discuss how repurposing WiFi logs can facilitate applications for domains like mental wellbeing and physical health.
翻译:对合用同一地点的全面理解可以帮助理解绩效结果。 对于大学组群来说,这需要长期描述大型群体的数据。 使用用户工具来推断这一点, 虽然诱人, 却受到隐私问题、 电力消耗和维护问题的挑战。 或者, 将新的传感器嵌入环境受到覆盖整个校园的费用的限制。 我们调查利用WiFi协会日志来利用WiFi协会日志的可行性。 虽然这些日志提供了粗略的近似位置, 但这些近似可以轻易获得, 并描述一个学期的校园中多个用户。 我们探索这些相近的合用地如何与个人绩效相关。 具体地说, 我们检查项目组成员的个人性能和合用地行为之间的关系。 我们在14周内对163名学生( 54个项目组)进行了研究。 在说明我们如何确定与WiFi的日志同地点之后, 我们提交一份研究, 分析各组内合用日志与学生最后得分的关系如何。 我们发现合用的行为显示与业绩有显著的相关性( Pearson's = 0. 24) 。 我们发现, 比同行反馈更好, 或者 WiFilog 个人行为更便于应用。