We present a shared data model for enabling data science in Massive Open Online Courses (MOOCs). The model captures students interactions with the online platform. The data model is platform agnostic and is based on some basic core actions that students take on an online learning platform. Students usually interact with the platform in four different modes: Observing, Submitting, Collaborating and giving feedback. In observing mode students are simply browsing the online platform, watching videos, reading material, reading book or watching forums. In submitting mode, students submit information to the platform. This includes submissions towards quizzes, homeworks, or any assessment modules. In collaborating mode students interact with other students or instructors on forums, collaboratively editing wiki or chatting on google hangout or other hangout venues. With this basic definitions of activities, and a data model to store events pertaining to these activities, we then create a common terminology to map Coursera and edX data into this shared data model. This shared data model called MOOCdb becomes the foundation for a number of collaborative frameworks that enable progress in data science without the need to share the data.
翻译:在大规模开放在线课程中,我们为数据科学提供了一个共享的数据模型。模型捕捉了学生与在线平台的互动。数据模型是平台不可知的,以学生在在线学习平台上采取的一些基本核心行动为基础。学生通常以四种不同的方式与平台互动:观测、提交、协作和反馈。在观察模式中,学生只是浏览在线平台、观看视频、阅读材料、阅读书或观察论坛。在提交模式中,学生向平台提交信息。这包括针对测验、家庭作业或任何评估模块的提交。在合作模式中,学生与其他学生或教员在论坛上互动,合作编辑维基或聊天,在谷歌外闲逛或其他外闲逛场所。根据这种活动的基本定义,以及存储与这些活动相关的事件的数据模型,我们随后创建了一个共同术语,用于将课程和编辑X数据纳入这一共享的数据模型。这个称为MOOCdb的共同数据模型成为一些合作框架的基础,使数据科学取得进展而无需分享数据。