Contact tracing is a well-established and effective approach for the containment of the spread of infectious diseases. While Bluetooth-based contact tracing method using phones has become popular recently, these approaches suffer from the need for a critical mass adoption to be effective. In this paper, we present WiFiTrace, a network-centric approach for contact tracing that relies on passive WiFi sensing with no client-side involvement. Our approach exploits WiFi network logs gathered by enterprise networks for performance and security monitoring, and utilizes them for reconstructing device trajectories for contact tracing. Our approach is specifically designed to enhance the efficacy of traditional methods, rather than to supplant them with new technology. We designed an efficient graph algorithm to scale our approach to large networks with tens of thousands of users. The graph-based approach outperforms an indexed PostgresSQL in memory by at least 4.5X without any index update overheads or blocking. We have implemented a full prototype of our system and deployed it on two large university campuses. We validated our approach and demonstrate its efficacy using case studies and detailed experiments using real-world WiFi datasets.
翻译:使用电话的蓝牙联系追踪方法最近变得很流行,但这些方法却因必须有效采用临界质量方法而受到影响。在本文中,我们介绍了WiFiTrace,这是一个以网络为中心的联系追踪方法,依靠被动的WiFi遥感进行联系,没有客户参与。我们的方法利用企业网络收集的WiFi网络日志进行性能和安全监测,并利用这些网络日志重建设备轨迹进行联系追踪。我们的方法是专门用来提高传统方法的功效,而不是用新技术取代这些方法。我们设计了一个高效的图表算法,以扩大我们与成千上万用户的大型网络的联系。基于图表的方法在记忆中比指数化的PostgresSQL(PostgresQL)要大得多,没有指数更新间接费用或屏蔽。我们实施了我们系统的完整原型,并将其部署在两个大型大学校园。我们验证了我们的方法,并用实际世界WiFi数据集的案例研究和详细实验来证明它的有效性。