We show that quantum oracles provide an advantage over classical oracles for answering classical counterfactual questions in causal models, or equivalently, for identifying unknown causal parameters such as distributions over functional dependences. In structural causal models with discrete classical variables, observational data and even ideal interventions generally fail to answer all counterfactual questions, since different causal parameters can reproduce the same observational and interventional data while disagreeing on counterfactuals. Using a simple binary example, we demonstrate that if the classical variables of interest are encoded in quantum systems and the causal dependence among them is encoded in a quantum oracle, coherently querying the oracle enables the identification of all causal parameters -- hence all classical counterfactuals. We generalize this to arbitrary finite cardinalities and prove that coherent probing 1) allows the identification of all two-way joint counterfactuals p(Y_x=y, Y_{x'}=y'), which is not possible with any number of queries to a classical oracle, and 2) provides tighter bounds on higher-order multi-way counterfactuals than with a classical oracle. This work can also be viewed as an extension to traditional quantum oracle problems such as Deutsch--Jozsa to identifying more causal parameters beyond just, e.g., whether a function is constant or balanced. Finally, we raise the question of whether this quantum advantage relies on uniquely non-classical features like contextuality. We provide some evidence against this by showing that in the binary case, oracles in some classically-explainable theories like Spekkens' toy theory also give rise to a counterfactual identifiability advantage over strictly classical oracles.
翻译:我们证明,在因果模型中回答经典反事实问题时,量子预言机相较于经典预言机具有优势;等价地,在识别未知因果参数(如函数依赖关系的分布)时也是如此。在具有离散经典变量的结构因果模型中,观测数据乃至理想干预通常无法回答所有反事实问题,因为不同的因果参数可能生成相同的观测和干预数据,却在反事实上存在分歧。通过一个简单的二元示例,我们证明:若感兴趣的经典变量编码于量子系统中,且它们之间的因果依赖关系编码于量子预言机中,则通过相干查询该预言机能够识别所有因果参数——从而识别所有经典反事实。我们将此推广至任意有限基数情况,并证明相干探测能够:1)识别所有双向联合反事实概率 p(Y_x=y, Y_{x'}=y'),这是任何次数的经典预言机查询都无法实现的;2)相比经典预言机,为高阶多路反事实提供更严格的界限。本工作亦可视为对传统量子预言机问题(如Deutsch–Jozsa算法)的扩展,旨在识别更多因果参数,而不仅仅是判断函数是否为常值或平衡。最后,我们提出疑问:这种量子优势是否依赖于诸如上下文性等独特的非经典特征。通过证明在二元情况下,某些经典可解释理论(如Spekkens玩具理论)中的预言机同样能产生优于严格经典预言机的反事实可识别性优势,我们提供了否定该观点的部分证据。