The spreading pattern of COVID-19 differ a lot across the US states under different quarantine measures and reopening policies. We proposed to cluster the US states into distinct communities based on the daily new confirmed case counts via a nonnegative matrix factorization (NMF) followed by a k-means clustering procedure on the coefficients of the NMF basis. A cross-validation method was employed to select the rank of the NMF. Applying the method to the entire study period from March 22 to July 25, we clustered the 49 continental states (including District of Columbia) into 7 groups, two of which contained a single state. To investigate the dynamics of the clustering results over time, the same method was successively applied to the time periods with increment of one week, starting from the period of March 22 to March 28. The results suggested a change point in the clustering in the week starting on May 30, which might be explained by a combined impact of both quarantine measures and reopening policies.
翻译:在不同的检疫措施和重新开放政策下,COVID-19的传播模式在美国各州有很大差异。我们提议,根据每天新确认的病例数量,通过非负矩阵因子化(NMF),然后根据NMF系数的K手段集中程序,将美国各州分组为不同的社区。采用了交叉验证方法来选择NMF的等级。在3月22日至7月25日的整个研究期间,我们将49个大陆州(包括哥伦比亚特区)分组为7个组,其中2个组包含一个州。为了调查一段时间内聚居结果的动态,从3月22日至3月28日连续采用同一方法,从3月22日至3月28日的一周内增加一个星期。结果显示,从5月30日开始的一周内,聚居地出现一个变化点,原因可能是检疫措施和重新开放政策的综合影响。