Prediction intervals are commonly used in meta-analysis with random-effects models. One widely used method, the Higgins-Thompson-Spiegelhalter prediction interval, replaces the heterogeneity parameter with its point estimate, but its validity strongly depends on a large sample approximation. This is a weakness in meta-analyses with few studies. We propose an alternative based on bootstrap and show by simulations that its coverage is close to the nominal level, unlike the Higgins-Thompson-Spiegelhalter method and its extensions. The proposed method was applied in three meta-analyses.
翻译:预测区间在随机效应模型的元分析中广泛应用。一种广泛使用的方法——Higgins-Thompson-Spiegelhalter预测区间——将异质性参数替换为其点估计,但其有效性严重依赖于大样本近似。这在研究数量较少的元分析中是一个缺陷。我们提出了一种基于自助法的替代方法,并通过模拟表明,与Higgins-Thompson-Spiegelhalter方法及其扩展不同,其覆盖率接近名义水平。所提出的方法已在三个元分析案例中得到应用。