Multi-agent behavior modeling aims to understand the interactions that occur between agents. We present a multi-agent dataset from behavioral neuroscience, the Caltech Mouse Social Interactions (CalMS21) Dataset. Our dataset consists of the social interactions between freely behaving mice in a standard resident-intruder assay. The CalMS21 dataset is part of the Multi-Agent Behavior Challenge 2021 and for our next step, we aim to incorporate datasets from other domains studying multi-agent behavior. To help accelerate behavioral studies, the CalMS21 dataset provides a benchmark to evaluate the performance of automated behavior classification methods in three settings: (1) for training on large behavioral datasets all annotated by a single annotator, (2) for style transfer to learn inter-annotator differences in behavior definitions, and (3) for learning of new behaviors of interest given limited training data. The dataset consists of 6 million frames of unlabelled tracked poses of interacting mice, as well as over 1 million frames with tracked poses and corresponding frame-level behavior annotations. The challenge of our dataset is to be able to classify behaviors accurately using both labelled and unlabelled tracking data, as well as being able to generalize to new annotators and behaviors.
翻译:多试剂行为模型旨在了解代理商之间的相互作用。 我们提出了一个来自行为神经科学、 Caltech鼠社会互动(CalMS21) 数据集的多剂数据集。 我们的数据集包含在标准的常住干扰器实验中自由行为小鼠之间的社会互动。 CalMS21 数据集是多代理行为挑战 2021 和我们下一步的一部分, 我们的目标是纳入研究多试剂行为的其他领域的数据集。 为了帮助加速行为研究, CalMS21 数据集提供了一个基准,用以评估三个环境自动行为分类方法的性能:(1) 由单个说明者说明大型行为数据集的培训,(2) 风格转换以学习行为定义方面的行为差异,(3) 学习受有限培训数据而感兴趣的新行为。 该数据集由600万个未贴标签的跟踪小鼠的跟踪形状组成, 以及100多万个带有跟踪配置和相应框架行为描述的框架。 我们数据集的挑战是如何用标签和未加标定的常规行为跟踪来将行为分类, 。