We introduce a framework of the equivariant convolutional quantum algorithms which is tailored for a number of machine-learning tasks on physical systems with arbitrary SU$(d)$ symmetries. It allows us to enhance a natural model of quantum computation -- permutational quantum computing (PQC) -- and define a more powerful model: PQC+. While PQC was shown to be efficiently classically simulatable, we exhibit a problem which can be efficiently solved on PQC+ machine, whereas no classical polynomial time algorithm is known; thus providing evidence against PQC+ being classically simulatable. We further discuss practical quantum machine learning algorithms which can be carried out in the paradigm of PQC+.
翻译:我们提出了一个等变卷积量子算法框架,该框架专门针对具有任意SU$(d)$对称性的物理系统上的多种机器学习任务。该框架使我们能够增强量子计算的自然模型——置换量子计算(PQC),并定义一个更强大的模型:PQC+。虽然PQC已被证明是经典可高效模拟的,但我们展示了一个可以在PQC+机器上高效解决的问题,而目前尚无已知的经典多项式时间算法;这为PQC+不是经典可模拟的提供了证据。我们进一步讨论了可以在PQC+范式下实现的实用量子机器学习算法。