In this paper, we develop a novel method for fast geodesic distance queries. The key idea is to embed the mesh into a high-dimensional space, such that the Euclidean distance in the high-dimensional space can induce the geodesic distance in the original manifold surface. However, directly solving the high-dimensional embedding problem is not feasible due to the large number of variables and the fact that the embedding problem is highly nonlinear. We overcome the challenges with two novel ideas. First, instead of taking all vertices as variables, we embed only the saddle vertices, which greatly reduces the problem complexity. We then compute a local embedding for each non-saddle vertex. Second, to reduce the large approximation error resulting from the purely Euclidean embedding, we propose a cascaded optimization approach that repeatedly introduces additional embedding coordinates with a non-Euclidean function to reduce the approximation residual. Using the precomputation data, our approach can determine the geodesic distance between any two vertices in near-constant time. Computational testing results show that our method is more desirable than previous geodesic distance queries methods.
翻译:在本文中, 我们开发了一个用于快速大地测量距离查询的新颖方法。 关键的想法是将网格嵌入高维空间, 这样高维空间的欧几里德距离可以诱导原始多面表面的大地测量距离。 但是, 直接解决高维嵌入问题不可行, 因为变量数量众多, 嵌入问题是高度非线性的问题。 我们用两个新想法克服了挑战。 首先, 我们的方法不是将所有脊椎都作为变量, 我们只能嵌入马鞍顶, 从而大大降低问题的复杂性。 然后我们计算每个非斜面的顶部的本地嵌入。 其次, 为了减少纯欧几里德嵌入产生的大近似错误, 我们建议一个累进式优化方法, 反复引入与非欧几里德函数的附加嵌入坐标, 以减少近似性残留。 我们的方法可以使用预调算数据, 来决定近距离时间中任何两个顶端之间的地德差距离。 计算结果显示, 我们的方法比先前的距离查询方法更可取。