Mental illnesses are one of the most prevalent public health problems worldwide, which negatively influence people's lives and society's health. With the increasing popularity of social media, there has been a growing research interest in the early detection of mental illness by analysing user-generated posts on social media. According to the correlation between emotions and mental illness, leveraging and fusing emotion information has developed into a valuable research topic. In this article, we provide a comprehensive survey of approaches to mental illness detection in social media that incorporate emotion fusion. We begin by reviewing different fusion strategies, along with their advantages and disadvantages. Subsequently, we discuss the major challenges faced by researchers working in this area, including issues surrounding the availability and quality of datasets, the performance of algorithms and interpretability. We additionally suggest some potential directions for future research.


翻译:心理疾病是全球最普遍的公共卫生问题之一,对人们的生活和社会健康产生负面影响。随着社交媒体越来越受欢迎,越来越多的研究关注通过分析用户在社交媒体上生成的帖子来早期检测心理疾病。根据情感与心理疾病的相关性,利用和融合情感信息已经发展成为一个有价值的研究主题。在本文中,我们提供了涉及情感融合的社交媒体心理疾病检测方法的全面调查。我们首先回顾了不同的融合策略及其优缺点。随后,我们讨论了研究人员在此领域面临的主要挑战,包括与数据集的可用性和质量、算法的性能和可解释性有关的问题。我们还提出了一些未来研究的潜在方向。

0
下载
关闭预览

相关内容

社交媒体(Social Media)是一种给与用户极大参与空间的新型在线媒体,博客、维基、播客、论坛、社交网络、内容社区是具体的实例。
Into the Metaverse,93页ppt介绍元宇宙概念、应用、趋势
专知会员服务
48+阅读 · 2022年2月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
多模态认知计算
专知
7+阅读 · 2022年9月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
【推荐】深度学习情感分析综述
机器学习研究会
58+阅读 · 2018年1月26日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
31+阅读 · 2022年2月15日
Arxiv
33+阅读 · 2021年12月31日
Arxiv
15+阅读 · 2021年12月22日
Arxiv
13+阅读 · 2020年10月19日
Arxiv
20+阅读 · 2020年6月8日
A Survey on Deep Learning for Named Entity Recognition
Arxiv
73+阅读 · 2018年12月22日
VIP会员
相关VIP内容
Into the Metaverse,93页ppt介绍元宇宙概念、应用、趋势
专知会员服务
48+阅读 · 2022年2月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
相关论文
Arxiv
31+阅读 · 2022年2月15日
Arxiv
33+阅读 · 2021年12月31日
Arxiv
15+阅读 · 2021年12月22日
Arxiv
13+阅读 · 2020年10月19日
Arxiv
20+阅读 · 2020年6月8日
A Survey on Deep Learning for Named Entity Recognition
Arxiv
73+阅读 · 2018年12月22日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员