Graph Neural Networks have demonstrated significant success in graph classification tasks, yet they often require substantial computational resources and struggle to capture global graph properties effectively. We introduce LightTopoGAT, a lightweight graph attention network that enhances node features through topological augmentation by incorporating node degree and local clustering coefficient to improve graph representation learning. The proposed approach maintains parameter efficiency through streamlined attention mechanisms while integrating structural information that is typically overlooked by local message passing schemes. Through comprehensive experiments on three benchmark datasets, MUTAG, ENZYMES, and PROTEINS, we show that LightTopoGAT achieves superior performance compared to established baselines including GCN, GraphSAGE, and standard GAT, with a 6.6 percent improvement in accuracy on MUTAG and a 2.2 percent improvement on PROTEINS. Ablation studies further confirm that these performance gains arise directly from the inclusion of topological features, demonstrating a simple yet effective strategy for enhancing graph neural network performance without increasing architectural complexity.


翻译:图神经网络在图分类任务中已展现出显著成功,但其通常需要大量计算资源,且难以有效捕获图的全局属性。本文提出LightTopoGAT,一种轻量级图注意力网络,通过融入节点度与局部聚类系数进行拓扑增强以改进节点特征,从而提升图表示学习能力。该方法通过简化的注意力机制保持参数效率,同时整合了局部消息传递机制通常忽略的结构信息。通过在MUTAG、ENZYMES和PROTEINS三个基准数据集上的系统实验,我们证明LightTopoGAT相较于GCN、GraphSAGE及标准GAT等基线模型具有更优性能,在MUTAG数据集上准确率提升6.6%,在PROTEINS数据集上提升2.2%。消融实验进一步证实,这些性能提升直接源于拓扑特征的引入,展示了一种无需增加架构复杂度即可增强图神经网络性能的简洁而有效的策略。

0
下载
关闭预览

相关内容

图注意力网络(Graph Attention Network,GAT),它通过注意力机制(Attention Mechanism)来对邻居节点做聚合操作,实现了对不同邻居权重的自适应分配,从而大大提高了图神经网络模型的表达能力。
【ICML2023】SEGA:结构熵引导的图对比学习锚视图
专知会员服务
23+阅读 · 2023年5月10日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
【NeurIPS2019】图变换网络:Graph Transformer Network
论文浅尝 | Know-Evolve: Deep Temporal Reasoning for Dynamic KG
开放知识图谱
36+阅读 · 2018年3月30日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
8+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
VIP会员
相关基金
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
8+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员