Many modern learning algorithms mitigate bias by enforcing fairness across coarsely-defined groups related to a sensitive attribute like gender or race. However, the same algorithms seldom account for the within-group biases that arise due to the heterogeneity of group members. In this work, we characterize Social Norm Bias (SNoB), a subtle but consequential type of discrimination that may be exhibited by automated decision-making systems, even when these systems achieve group fairness objectives. We study this issue through the lens of gender bias in occupation classification from biographies. We quantify SNoB by measuring how an algorithm's predictions are associated with conformity to gender norms, which is measured using a machine learning approach. This framework reveals that for classification tasks related to male-dominated occupations, fairness-aware classifiers favor biographies written in ways that align with masculine gender norms. We compare SNoB across fairness intervention techniques and show that post-processing interventions do not mitigate this type of bias at all.


翻译:许多现代学习算法通过在与性别或种族等敏感属性有关的粗略定义群体中实行公平来减少偏见,但同样的算法很少考虑到由于群体成员的多样性而产生的群体内部偏见。在这项工作中,我们把社会Norm Bias(SNoB)定性为一种微妙但随之而来的歧视,这种歧视可以通过自动决策系统表现出来,即使这些系统实现了群体公平目标。我们通过从生物学中职业分类中的性别偏见的视角来研究这一问题。我们用SNoB量化SNoB,衡量一种算法的预测如何与性别规范相符,而性别规范是通过机器学习方法衡量的。这个框架显示,在与男性主导的职业有关的分类任务中,公平意识分类者倾向于以符合男性性别规范的方式编写生物特征。我们将SNoB与公平干预技术作比较,并表明后处理干预措施不会完全减轻这种类型的偏见。

0
下载
关闭预览

相关内容

专知会员服务
91+阅读 · 2021年6月3日
最新《高级算法》Advanced Algorithms,176页pdf
专知会员服务
90+阅读 · 2020年10月22日
专知会员服务
123+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年10月19日
Arxiv
0+阅读 · 2021年10月18日
Arxiv
3+阅读 · 2021年2月24日
VIP会员
相关VIP内容
专知会员服务
91+阅读 · 2021年6月3日
最新《高级算法》Advanced Algorithms,176页pdf
专知会员服务
90+阅读 · 2020年10月22日
专知会员服务
123+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员