Despite current advances in deep learning, domain shift remains a common problem in medical imaging settings. Recent findings on natural images suggest that deep neural models can show a textural bias when carrying out image classification tasks, which goes against the common understanding of convolutional neural networks (CNNs) recognising objects through increasingly complex representations of shape. This study draws inspiration from recent findings on natural images and aims to investigate ways in which addressing the textural bias phenomenon could be used to bring up the robustness and transferability of deep segmentation models when applied to three-dimensional (3D) medical data. To achieve this, publicly available MRI scans from the Developing Human Connectome Project are used to investigate ways in which simulating textural noise can help train robust models in a complex segmentation task. Our findings illustrate how applying specific types of textural filters prior to training the models can increase their ability to segment scans corrupted by previously unseen noise.
翻译:尽管目前在深层学习方面有所进步,但地区转移仍然是医学成像环境中的一个常见问题。最近对自然图像的调查结果表明,深层神经模型在执行图像分类任务时,可以显示一种纹理偏差,这违背了对进化神经网络(CNNs)的共同理解,即通过日益复杂的形状表示来识别物体。这项研究从关于自然图像的最新发现中汲取了灵感,目的是研究如何利用处理纹理偏差现象的方法,在对三维(3D)医学数据应用时,使深层分解模型更加稳健和可转移。为了实现这一目标,从开发人类连接项目中公开获得的 MRI 扫描用于调查模拟质动噪音如何有助于在复杂的分解任务中培养稳健模型。我们的调查结果说明了在培训模型之前应用特定类型的纹理过滤器如何提高它们通过先前看不见的噪音进行分解的能力。