The strength of social relations has been shown to affect an individual's access to opportunities. To date, however, the correspondence between tie strength and population's economic prospects has not been quantified, largely because of the inability to operationalise strength based on Granovetter's classic theory. Our work departed from the premise that tie strength is a unidimensional construct (typically operationalized with frequency or volume of contact), and used instead a validated model of ten fundamental dimensions of social relationships grounded in the literature of social psychology. We built state-of-the-art NLP tools to infer the presence of these dimensions from textual communication, and analyzed a large conversation network of 630K geo-referenced Reddit users across the entire US connected by 12.8M social ties created over the span of 7 years. We found that unidimensional tie strength is only weakly correlated with economic opportunities (R2=0.30), while multidimensional constructs are highly correlated (R2=0.62). In particular, economic opportunities are associated to the combination of: i) knowledge ties, which bridge geographically distant groups, facilitating the knowledge dissemination across communities; and ii) social support ties, which knit geographically close communities together, and represent dependable sources of social and emotional support. These results point to the importance of developing high-quality measures of tie strength in network theory.


翻译:社会关系的力量已经证明会影响个人获得机会的机会。然而,迄今为止,联系力量与人口经济前景之间的对应关系还没有量化,这主要是因为无法根据格拉诺维特的经典理论运用力量。 我们的工作偏离了这样一种前提,即:联系力量是一个单维结构(通常以接触频率或数量运作),而采用了基于社会心理学文献的社会关系十个基本层面的经验证模式。我们建立了最先进的NLP工具,以推断这些层面在文字通信中的存在,并分析了由630K地理参照的Reddit用户组成的大型对话网络,该网络遍布全美,由12.8M社会联系连接起来,7年。我们发现,单维联系力量与经济机会(R2=0.30)关系密切,而多层面结构则密切相关(R2=0.62)。 特别是,经济机会与以下各种知识联系的组合有关:i)知识联系,它连接着地理上相距遥远的群体,便利了知识在社区之间传播;以及这些社会支持的高度联系在地理上代表着社会支持的可靠程度,这些社会支持是社会联系的可靠程度。

0
下载
关闭预览

相关内容

专知会员服务
26+阅读 · 2021年4月2日
强化学习最新教程,17页pdf
专知会员服务
180+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年2月20日
Arxiv
0+阅读 · 2023年2月20日
Arxiv
0+阅读 · 2023年2月20日
Arxiv
49+阅读 · 2020年12月16日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员