Social media data such as Twitter messages ("tweets") pose a particular challenge to NLP systems because of their short, noisy, and colloquial nature. Tasks such as Named Entity Recognition (NER) and syntactic parsing require highly domain-matched training data for good performance. While there are some publicly available annotated datasets of tweets, they are all purpose-built for solving one task at a time. As yet there is no complete training corpus for both syntactic analysis (e.g., part of speech tagging, dependency parsing) and NER of tweets. In this study, we aim to create Tweebank-NER, an NER corpus based on Tweebank V2 (TB2), and we use these datasets to train state-of-the-art NLP models. We first annotate named entities in TB2 using Amazon Mechanical Turk and measure the quality of our annotations. We train a Stanza NER model on the new benchmark, achieving competitive performance against other non-transformer NER systems. Finally, we train other Twitter NLP models (a tokenizer, lemmatizer, part of speech tagger, and dependency parser) on TB2 based on Stanza, and achieve state-of-the-art or competitive performance on these tasks. We release the dataset and make the models available to use in an "off-the-shelf" manner for future Tweet NLP research. Our source code, data, and pre-trained models are available at: \url{https://github.com/social-machines/TweebankNLP}.


翻译:推特信息( tweets) 等社交媒体数据( 如 Twitter 信息) 给 NLP 系统带来了特殊的挑战, 因为它们的短、 吵闹和学术性质。 命名实体识别( NER ) 和合成分析等任务需要高域匹配的培训数据才能取得良好的表现。 虽然有些附加注释的推文数据集可供公众使用, 但它们都是为一次性解决一项任务而创建的。 但是, 还没有一个完整的综合分析( 例如, 部分语音标记、 依赖分析) 和 推文净化系统 的培训中心。 在本研究中, 我们的目标是创建以 Tweebbank- NER2 (TB2 2 ) 为基础的NER 网络识别( NNER ) 和 合成合成分析系统 。 我们用这些数据集来培训Twebanza NBLP 数据模型, 以及基于 NBLP 格式的SDR 数据模型 。 我们用新的基准、 Stanza NWL- Ralder- supal- supal salal com com commal- deal- deal ex the the Statal- sal- sal- sal- sal- sal- smal- smal exmal- sal- sal- sal exmal sal ex exmetal ex ex ex the semmmmmmmmlationals ex.

0
下载
关闭预览

相关内容

最新《Transformers模型》教程,64页ppt
专知会员服务
312+阅读 · 2020年11月26日
专知会员服务
124+阅读 · 2020年9月8日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
A Survey on Deep Learning for Named Entity Recognition
Arxiv
26+阅读 · 2020年3月13日
Arxiv
11+阅读 · 2019年6月19日
Arxiv
15+阅读 · 2018年2月4日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员