This paper consolidates the core technologies and key concepts of our novel Lachesis consensus protocol and Fantom Opera platform, which is permissionless, leaderless and EVM compatible. We introduce our new protocol, so-called Lachesis, for distributed networks achieving Byzantine fault tolerance (BFT)~\cite{lachesis01}. Each node in Lachesis protocol operates on a local block DAG, namely \emph{OPERA DAG}. Aiming for a low time to finality (TTF) for transactions, our general model considers DAG streams of high speed but asynchronous events. We integrate Proof-of-Stake (PoS) into a DAG model in Lachesis protocol to improve performance and security. Our general model of trustless system leverages participants' stake as their validating power~\cite{stakedag}. Lachesis's consensus algorithm uses Lamport timestamps, graph layering and concurrent common knowledge to guarantee a consistent total ordering of event blocks and transactions. In addition, Lachesis protocol allows dynamic participation of new nodes into Opera network. Lachesis optimizes DAG storage and processing time by splitting local history into checkpoints (so-called epochs). We also propose a model to improve stake decentralization, and network safety and liveness ~\cite{stairdag}. Built on our novel Lachesis protocol, Fantom's Opera platform is a public, leaderless, asynchronous BFT, layer-1 blockchain, with guaranteed deterministic finality. Hence, Lachesis protocol is suitable for distributed ledgers by leveraging asynchronous partially ordered sets with logical time ordering instead of blockchains. We also present our proofs into a model that can be applied to abstract asynchronous distributed system.


翻译:本文整合了我们新的Lachesis共识协议和Fantom歌剧院平台的核心技术和关键概念, 这些平台是不允许的、没有领头的和与EVM兼容的。 我们推出我们的新协议, 即所谓的Lachesis, 用于实现Byzantine断裂容忍(BFT)\\\\cite{lachesi{lachesis01}的分布式网络。 Lachesis 的每一个节点都在本地区 DAG, 即\emph{Opera DAG}运作。 我们的普通模式为交易争取一个低时间到最终(TTTF), 我们的总模式考虑DAG流的高速但不同步的事件。 我们把“接头”(POOS) 纳入到Lachesis协议的DAG 模型中, 我们的“接头” 将参与者的股份作为验证电路标值的模型, Lachesis 使用Lamportstal commationaltal ams, lax drouptaltialtical cal rations, lax us acaltical deview strealtical surview stal suplation.

0
下载
关闭预览

相关内容

专知会员服务
40+阅读 · 2020年9月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
雪球
6+阅读 · 2018年8月19日
Arxiv
0+阅读 · 2021年10月5日
Arxiv
6+阅读 · 2020年3月16日
Arxiv
7+阅读 · 2018年3月21日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
雪球
6+阅读 · 2018年8月19日
Top
微信扫码咨询专知VIP会员