Arithmetic circuits (AC) are circuits over the real numbers with 0/1-valued input variables whose gates compute the sum or the product of their inputs. Positive AC -- that is, AC representing non-negative functions -- subsume many interesting probabilistic models such as probabilistic sentential decision diagram (PSDD) or sum-product network (SPN) on indicator variables. Efficient algorithms for many operations useful in probabilistic reasoning on these models critically depend on imposing structural restrictions to the underlying AC. Generally, adding structural restrictions yields new tractable operations but increases the size of the AC. In this paper we study the relative succinctness of classes of AC with different combinations of common restrictions. Building on existing results for Boolean circuits, we derive an unconditional succinctness map for classes of monotone AC -- that is, AC whose constant labels are non-negative reals -- respecting relevant combinations of the restrictions we consider. We extend a small part of the map to classes of positive AC. Those are known to generally be exponentially more succinct than their monotone counterparts, but we observe here that for so-called deterministic circuits there is no difference between the monotone and the positive setting which allows us to lift some of our results. We end the paper with some insights on the relative succinctness of positive AC by showing exponential lower bounds on the representations of certain functions in positive AC respecting structured decomposability.


翻译:自然电路(AC) 是真实数字的回路, 其输入值为 0/1 值的输入变量, 其门能计算其总和或投入的产物。 正AC, 即代表非负函数的 AC, 包含许多有趣的概率模型, 如概率性、 感知性决定图(PSDD) 或总产品网络(SPN ) 指标变量。 许多操作对于这些模型的概率推理有用。 有效的算法, 关键取决于对基本 AC 施加结构性限制。 一般来说, 添加结构性限制可以产生新的可移植操作, 并增加 AC 的大小。 在本文中, 我们研究AC 类别与不同共同限制组合的 AC 类的相对简洁性。 在Boolean 电路的现有结果的基础上, 我们得出一个无条件的简洁性图, 它的标签是非负负真实性真实性真实性, 尊重我们所考虑的限制的相关组合。 我们将地图的一小部分扩展为正性 A C 类 。 一般来说, 其结构上的精确性功能比 C 直径直径直径直的功能更精确,, 我们在这里看到我们这里某些平直观的图像中, 直径直径直观的图像中,, 使我们无法 的平的平的平反正直观性 。

0
下载
关闭预览

相关内容

【硬核书】矩阵代数基础,248页pdf
专知会员服务
86+阅读 · 2021年12月9日
【干货书】开放数据结构,Open Data Structures,337页pdf
专知会员服务
17+阅读 · 2021年9月17日
专知会员服务
53+阅读 · 2021年2月10日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
5+阅读 · 2017年11月20日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Arxiv
0+阅读 · 2021年12月17日
VIP会员
相关VIP内容
【硬核书】矩阵代数基础,248页pdf
专知会员服务
86+阅读 · 2021年12月9日
【干货书】开放数据结构,Open Data Structures,337页pdf
专知会员服务
17+阅读 · 2021年9月17日
专知会员服务
53+阅读 · 2021年2月10日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
5+阅读 · 2017年11月20日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Top
微信扫码咨询专知VIP会员