Recommender systems are important and valuable tools for many personalized services. Collaborative Filtering (CF) algorithms -- among others -- are fundamental algorithms driving the underlying mechanism of personalized recommendation. Many of the traditional CF algorithms are designed based on the fundamental idea of mining or learning correlative patterns from data for matching, including memory-based methods such as user/item-based CF as well as learning-based methods such as matrix factorization and deep learning models. However, advancing from correlative learning to causal learning is an important problem, since causal/counterfactual modeling helps us to go beyond the observational data for user modeling and personalized. In this work, we propose Causal Collaborative Filtering (CCF) -- a general framework for modeling causality in collaborative filtering and recommender systems. We first provide a unified causal view of collaborative filtering and mathematically show that many of the traditional CF algorithms are actually special cases of CCF under simplified causal graphs. We then propose a conditional intervention approach for do-calculus so that we can estimate the causal relations based on observational data. Finally, we further propose a general counterfactual constrained learning framework for estimating the user-item preferences. Experiments are conducted on two types of real-world datasets -- traditional and randomized trial data -- and results show that our framework can improve the recommendation performance of many CF algorithms.


翻译:建议者系统是许多个性化服务的重要和宝贵工具。合作过滤算法 -- -- 除其他外 -- -- 是推动个人化建议基本机制的基本算法。许多传统CF算法的设计是基于采矿或从匹配数据中学习相关模式的基本理念,包括基于记忆的方法,如基于用户/项目的CF以及基于学习的方法,如矩阵系数化和深层次学习模式。然而,从相关学习向因果关系学习的推进是一个重要问题,因为因果/事实模型化有助于我们超越用户模型和个人化的观测数据。在此工作中,我们提议Causal合作过滤法(CCF) -- -- 一种用于模拟协作过滤和建议系统因果关系的一般框架。我们首先对协作过滤和数学显示许多传统CFC算法在简化因果图下实际上属于CFCC的特殊案例。我们随后提出了一种有条件的干预方法,以便我们能够根据观察数据模型和个人化来估计因果关系。最后,我们提出Cusal合作过滤法(CCF) -- -- -- 一种用于构建合作过滤和建议系统性因果关系的一般框架。我们进一步提出一个用于实验性用户性实际学习结果的典型框架。

1
下载
关闭预览

相关内容

协同过滤(英语:Collaborative Filtering),简单来说是利用某兴趣相投、拥有共同经验之群体的喜好来推荐用户感兴趣的信息,个人透过合作的机制给予信息相当程度的回应(如评分)并记录下来以达到过滤的目的进而帮助别人筛选信息,回应不一定局限于特别感兴趣的,特别不感兴趣信息的纪录也相当重要。协同过滤又可分为评比(rating)或者群体过滤(social filtering)。其后成为电子商务当中很重要的一环,即根据某顾客以往的购买行为以及从具有相似购买行为的顾客群的购买行为去推荐这个顾客其“可能喜欢的品项”,也就是借由社群的喜好提供个人化的信息、商品等的推荐服务。除了推荐之外,近年来也发展出数学运算让系统自动计算喜好的强弱进而去芜存菁使得过滤的内容更有依据,也许不是百分之百完全准确,但由于加入了强弱的评比让这个概念的应用更为广泛,除了电子商务之外尚有信息检索领域、网络个人影音柜、个人书架等的应用等。
【CVPR2021】动态度量学习
专知会员服务
40+阅读 · 2021年3月30日
【CVPR2021】自监督几何感知
专知会员服务
46+阅读 · 2021年3月6日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
【大规模数据系统,552页ppt】Large-scale Data Systems
专知会员服务
61+阅读 · 2019年12月21日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
已删除
将门创投
3+阅读 · 2019年1月8日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Arxiv
8+阅读 · 2019年5月20日
Arxiv
23+阅读 · 2018年8月3日
Arxiv
9+阅读 · 2018年1月30日
VIP会员
相关VIP内容
【CVPR2021】动态度量学习
专知会员服务
40+阅读 · 2021年3月30日
【CVPR2021】自监督几何感知
专知会员服务
46+阅读 · 2021年3月6日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
【大规模数据系统,552页ppt】Large-scale Data Systems
专知会员服务
61+阅读 · 2019年12月21日
相关资讯
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
已删除
将门创投
3+阅读 · 2019年1月8日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Top
微信扫码咨询专知VIP会员