Theorem provers has been used extensively in software engineering for software testing or verification. However, software is now so large and complex that additional architecture is needed to guide theorem provers as they try to generate test suites. The SNAP test suite generator (introduced in this paper) combines the Z3 theorem prover with the following tactic: cluster some candidate tests, then search for valid tests by proposing small mutations to the cluster centroids. This technique effectively removes repeated structures in the tests since many repeated structures can be replaced with one centroid. In practice, SNAP is remarkably effective. For 27 real-world programs with up to half a million variables, SNAP found test suites which were 10 to 750 smaller times than those found by the prior state-of-the-art. Also, SNAP ran orders of magnitude faster and (unlike prior work) generated 100% valid tests.


翻译:用于软件测试或核查的软件工程中广泛使用了理论验证器。 但是,软件现在如此庞大和复杂,在试图生成测试套件时,需要额外的结构来指导理论验证器。 SNAP 测试套件生成器(在本文件中引入)将Z3理论验证器与以下策略结合起来:将一些候选测试集中起来,然后通过向集束中子提出小变异来寻找有效的测试。这一技术有效地消除了测试中反复出现的结构,因为许多重复的结构可以用一个机器人替换。在实践中,SNAP非常有效。对于27个具有高达50万变量的实际世界程序,SNAP发现测试套件比先前最新工艺所发现的要小10至750倍。此外,SNAP运行的量级更快,(与以前的工作不同)产生了100%的有效测试。

0
下载
关闭预览

相关内容

SAT是研究者关注命题可满足性问题的理论与应用的第一次年度会议。除了简单命题可满足性外,它还包括布尔优化(如MaxSAT和伪布尔(PB)约束)、量化布尔公式(QBF)、可满足性模理论(SMT)和约束规划(CP),用于与布尔级推理有明确联系的问题。官网链接:http://sat2019.tecnico.ulisboa.pt/
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
89+阅读 · 2020年12月2日
最新《自动微分》综述教程,71页ppt
专知会员服务
22+阅读 · 2020年11月22日
【ECML/PKDD20教程】图表示学习与应用,200页ppt
专知会员服务
91+阅读 · 2020年10月18日
专知会员服务
124+阅读 · 2020年9月8日
专知会员服务
41+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年3月8日
Incremental Reading for Question Answering
Arxiv
5+阅读 · 2019年1月15日
VIP会员
相关VIP内容
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
89+阅读 · 2020年12月2日
最新《自动微分》综述教程,71页ppt
专知会员服务
22+阅读 · 2020年11月22日
【ECML/PKDD20教程】图表示学习与应用,200页ppt
专知会员服务
91+阅读 · 2020年10月18日
专知会员服务
124+阅读 · 2020年9月8日
专知会员服务
41+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员