The paper proposes multiple extensions to the popular bicriteria transit routing approach -- Trip-Based Transit Routing (TBTR). Specifically, building on the premise of the HypRAPTOR algorithm, we first extend TBTR to its partitioning variant -- HypTBTR. However, the improvement in query times of HyTBTR over TBTR comes at the cost of increased preprocessing. To counter this issue, two new techniques are proposed -- a one-to-many variant of TBTR and multilevel partitioning. Our accelerated one-to-many algorithm can rapidly solve profile queries, which not only reduces the preprocessing time for HypTBTR, but can also aid other popular approaches like Scalable Transfer Patterns and HypRAPTOR. Additionally, we integrate the multilevel graph partitioning paradigm in HypTBTR and HypRAPTOR to reduce the fill-in computations. The efficacy of the proposed algorithms is extensively tested on real-world large-scale datasets.
翻译:本文建议对流行的双标准过境路由方法 -- -- 以三方为基础的过境路由方法(TBTR)进行多次扩展。具体地说,在希普拉托运算法的前提下,我们首先将三丁基锡化合物扩展至其分割变体 -- -- HyTBTR。然而,HyTBTR对三丁基锡化合物的询问时间的改善是以增加预处理为代价的。为了解决这一问题,提出了两种新技术 -- -- 三丁基锡化合物的一对一变式和多级分割法。我们加速的一对一算法可以快速解析剖面查询,这不仅会缩短希卜特雷公司的预处理时间,还会帮助其他受欢迎的方法,如可缩放式转移模式和希普拉托尔。此外,我们将HyTBTR和希伯拉波托尔的多层次图分解模式整合在一起,以减少填充数计算。提议的算法的功效在现实世界大型数据集上得到广泛测试。