The field of artificial intelligence (AI) is witnessing a recent upsurge in research, tools development, and deployment of applications. Multiple software companies are shifting their focus to developing intelligent systems; and many others are deploying AI paradigms to their existing processes. In parallel, the academic research community is injecting AI paradigms to provide solutions to traditional engineering problems. Similarly, AI has evidently been proved useful to software engineering (SE). When one observes the SE phases (requirements, design, development, testing, release, and maintenance), it becomes clear that multiple AI paradigms (such as neural networks, machine learning, knowledge-based systems, natural language processing) could be applied to improve the process and eliminate many of the major challenges that the SE field has been facing. This survey chapter is a review of the most commonplace methods of AI applied to SE. The review covers methods between years 1975-2017, for the requirements phase, 46 major AI-driven methods are found, 19 for design, 15 for development, 68 for testing, and 15 for release and maintenance. Furthermore, the purpose of this chapter is threefold; firstly, to answer the following questions: is there sufficient intelligence in the SE lifecycle? What does applying AI to SE entail? Secondly, to measure, formulize, and evaluate the overlap of SE phases and AI disciplines. Lastly, this chapter aims to provide serious questions to challenging the current conventional wisdom (i.e., status quo) of the state-of-the-art, craft a call for action, and to redefine the path forward.


翻译:人工智能领域(AI)最近出现了研究、工具开发和应用的激增。多家软件公司正在将其重点转向开发智能系统;其他许多公司正在将AI范式用于现有进程。与此同时,学术研究界正在注入AI范式,为传统工程问题提供解决方案。同样,人工智能领域显然被证明对软件工程(SE)有用。当人们观察SE阶段(需求、设计、开发、测试、发布和维护)时,可以明显地看到,可以应用多种AI范式(如神经网络、机器学习、知识型系统、自然语言处理)来改进过程,消除SE领域面临的许多主要挑战。本调查章节是对适用于SE领域最常用的AI方法的审查。审查涵盖1975至2017年之间对要求阶段采用的方法,发现46种主要的AI驱动方法,19种用于设计,15种用于开发,68种用于测试,15种用于释放和维护。此外,本章的目的是三重的;首先,回答下列问题:在SEE周期中有足够的智能,最后是SEE的阶段,为SEA的严肃的阶段提供。

0
下载
关闭预览

相关内容

《工程》是中国工程院(CAE)于2015年推出的国际开放存取期刊。其目的是提供一个高水平的平台,传播和分享工程研发的前沿进展、当前主要研究成果和关键成果;报告工程科学的进展,讨论工程发展的热点、兴趣领域、挑战和前景,在工程中考虑人与环境的福祉和伦理道德,鼓励具有深远经济和社会意义的工程突破和创新,使之达到国际先进水平,成为新的生产力,从而改变世界,造福人类,创造新的未来。 期刊链接:https://www.sciencedirect.com/journal/engineering
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
人工智能 | 中低难度国际会议信息6条
Call4Papers
3+阅读 · 2019年4月3日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
16+阅读 · 2021年7月18日
Arxiv
20+阅读 · 2020年6月8日
AutoML: A Survey of the State-of-the-Art
Arxiv
69+阅读 · 2019年8月14日
VIP会员
相关资讯
人工智能 | 中低难度国际会议信息6条
Call4Papers
3+阅读 · 2019年4月3日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员